IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6262-d899723.html
   My bibliography  Save this article

Effects of Cathode Gas Diffusion Layer Configuration on the Performance of Open Cathode Air-Cooled Polymer Electrolyte Membrane Fuel Cell

Author

Listed:
  • Ming Peng

    (Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
    These authors contributed equally to this work.)

  • Enci Dong

    (Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
    These authors contributed equally to this work.)

  • Li Chen

    (Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Yu Wang

    (Shanghai Sinofuelcell Co., Ltd., Shanghai 201499, China)

  • Wen-Quan Tao

    (Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

The design of a gas diffusion layer (GDL) is an effective way to manage water transport, thus improving the performance of air-cooled fuel cells. In the present study, three group designs of GDL with polytetrafluoroethylene (PTFE)—uniformly doped, in-planed sandwich doped and through-plane gradient doped—are proposed, and their effects on the performance of air-cooled fuel cells are explored by numerical simulation. The distribution of key physical quantities in the cathode catalyst layer (CCL), current density and the uniformity of current density distribution in the CCL were analyzed in detail. The results show that properly reducing the amount of PTFE in GDL is beneficial to promoting the water retaining capacity of air-cooled fuel cells, and then improving the performance of fuel cells. The performance of the in-plane sandwich GDL design cannot exceed the design with 10% PTFE uniformly doped, and this design will aggravate the uneven distribution of current density in CCL. Compared with the design of GDL with 40% PTFE uniformly doped, the current density can be improved by 22% when operating at 0.6 V by gradient increasing the PTFE content in GDL from the GDL/MPL interface to the gas channel. Furthermore, this design can maintain as good a current density uniformity as uniformly doping schemes.

Suggested Citation

  • Ming Peng & Enci Dong & Li Chen & Yu Wang & Wen-Quan Tao, 2022. "Effects of Cathode Gas Diffusion Layer Configuration on the Performance of Open Cathode Air-Cooled Polymer Electrolyte Membrane Fuel Cell," Energies, MDPI, vol. 15(17), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6262-:d:899723
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6262/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6262/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guo, Lingyi & Chen, Li & Zhang, Ruiyuan & Peng, Ming & Tao, Wen-Quan, 2022. "Pore-scale simulation of two-phase flow and oxygen reactive transport in gas diffusion layer of proton exchange membrane fuel cells: Effects of nonuniform wettability and porosity," Energy, Elsevier, vol. 253(C).
    2. Liu, Lina & Guo, Lingyi & Zhang, Ruiyuan & Chen, Li & Tao, Wen-Quan, 2021. "Numerically investigating two-phase reactive transport in multiple gas channels of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 302(C).
    3. Cheng Wang & Shubo Wang & Linfa Peng & Junliang Zhang & Zhigang Shao & Jun Huang & Chunwen Sun & Minggao Ouyang & Xiangming He, 2016. "Recent Progress on the Key Materials and Components for Proton Exchange Membrane Fuel Cells in Vehicle Applications," Energies, MDPI, vol. 9(8), pages 1-39, July.
    4. Luo, Lizhong & Jian, Qifei & Huang, Bi & Huang, Zipeng & Zhao, Jing & Cao, Songyang, 2019. "Experimental study on temperature characteristics of an air-cooled proton exchange membrane fuel cell stack," Renewable Energy, Elsevier, vol. 143(C), pages 1067-1078.
    5. Somayeh Toghyani & Seyed Ali Atyabi & Xin Gao, 2021. "Enhancing the Specific Power of a PEM Fuel Cell Powered UAV with a Novel Bean-Shaped Flow Field," Energies, MDPI, vol. 14(9), pages 1-23, April.
    6. He, Pu & Mu, Yu-Tong & Park, Jae Wan & Tao, Wen-Quan, 2020. "Modeling of the effects of cathode catalyst layer design parameters on performance of polymer electrolyte membrane fuel cell," Applied Energy, Elsevier, vol. 277(C).
    7. Kong, Im Mo & Jung, Aeri & Kim, Min Soo, 2016. "Investigations on the double gas diffusion backing layer for performance improvement of self-humidified proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 176(C), pages 149-156.
    8. Kong, Im Mo & Choi, Jong Won & Kim, Sung Il & Lee, Eun Sook & Kim, Min Soo, 2015. "Experimental study on the self-humidification effect in proton exchange membrane fuel cells containing double gas diffusion backing layer," Applied Energy, Elsevier, vol. 145(C), pages 345-353.
    9. Luo, Lizhong & Huang, Bi & Bai, Xingying & Cheng, Zongyi & Jian, Qifei, 2020. "Temperature uniformity improvement of a proton exchange membrane fuel cell stack with ultra-thin vapor chambers," Applied Energy, Elsevier, vol. 270(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kong, Im Mo & Jung, Aeri & Kim, Young Sang & Kim, Min Soo, 2017. "Numerical investigation on double gas diffusion backing layer functionalized on water removal in a proton exchange membrane fuel cell," Energy, Elsevier, vol. 120(C), pages 478-487.
    2. Feng, Pengfei & Tan, Ligang & Cao, Yucheng & Chen, Ding, 2023. "Numerical investigations of two-phase flow coupled with species transport in proton exchange membrane fuel cells," Energy, Elsevier, vol. 278(PA).
    3. Kwon, Obeen & Kim, Jaeyeon & Choi, Heesoo & Cha, Hyeonjin & Shin, Myunggyu & Jeong, Youngjin & Park, Taehyun, 2022. "CNT sheet as a cathodic functional interlayer in polymer electrolyte membrane fuel cells," Energy, Elsevier, vol. 245(C).
    4. Chang, Yafei & Qin, Yanzhou & Yin, Yan & Zhang, Junfeng & Li, Xianguo, 2018. "Humidification strategy for polymer electrolyte membrane fuel cells – A review," Applied Energy, Elsevier, vol. 230(C), pages 643-662.
    5. Bai, Xingying & Luo, Lizhong & Huang, Bi & Huang, Zhe & Jian, Qifei, 2021. "Flow characteristics analysis for multi-path hydrogen supply within proton exchange membrane fuel cell stack," Applied Energy, Elsevier, vol. 301(C).
    6. Martin, S. & Garcia-Ybarra, P.L. & Castillo, J.L., 2017. "Long-term operation of a proton exchange membrane fuel cell without external humidification," Applied Energy, Elsevier, vol. 205(C), pages 1012-1020.
    7. Bouziane, Khadidja & Khetabi, El Mahdi & Lachat, Rémy & Zamel, Nada & Meyer, Yann & Candusso, Denis, 2020. "Impact of cyclic mechanical compression on the electrical contact resistance between the gas diffusion layer and the bipolar plate of a polymer electrolyte membrane fuel cell," Renewable Energy, Elsevier, vol. 153(C), pages 349-361.
    8. Lin, Rui & Tang, Shenghao & Diao, Xiaoyu & Zhong, Di & Chen, Liang & Froning, Dieter & Hao, Zhixian, 2020. "Detailed optimization of multiwall carbon nanotubes doped microporous layer in polymer electrolyte membrane fuel cells for enhanced performance," Applied Energy, Elsevier, vol. 274(C).
    9. Cabello González, G.M. & Toharias, Baltasar & Iranzo, Alfredo & Suárez, Christian & Rosa, Felipe, 2023. "Voltage distribution analysis and non-uniformity assessment in a 100 cm2 PEM fuel cell stack," Energy, Elsevier, vol. 282(C).
    10. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    11. Yu, Rui Jiao & Guo, Hang & Ye, Fang & Chen, Hao, 2022. "Multi-parameter optimization of stepwise distribution of parameters of gas diffusion layer and catalyst layer for PEMFC peak power density," Applied Energy, Elsevier, vol. 324(C).
    12. Chang, Huawei & Cai, Fengyang & Yu, Xianxian & Duan, Chen & Chan, Siew Hwa & Tu, Zhengkai, 2023. "Experimental study on the thermal management of an open-cathode air-cooled proton exchange membrane fuel cell stack with ultra-thin metal bipolar plates," Energy, Elsevier, vol. 263(PA).
    13. Teng Teng & Xin Zhang & Qicheng Xue & Baodi Zhang, 2024. "Research of Proton Exchange Membrane Fuel Cell Modeling on Concentration Polarization under Variable-Temperature Operating Conditions," Energies, MDPI, vol. 17(3), pages 1-17, February.
    14. Hou, Junbo & Yang, Min & Ke, Changchun & Zhang, Junliang, 2020. "Control logics and strategies for air supply in PEM fuel cell engines," Applied Energy, Elsevier, vol. 269(C).
    15. Pei, Pucheng & Wu, Ziyao & Li, Yuehua & Jia, Xiaoning & Chen, Dongfang & Huang, Shangwei, 2018. "Improved methods to measure hydrogen crossover current in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 215(C), pages 338-347.
    16. Zhao, Jian & Shahgaldi, Samaneh & Alaefour, Ibrahim & Xu, Qian & Li, Xianguo, 2018. "Gas permeability of catalyzed electrodes in polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 209(C), pages 203-210.
    17. Saeidfar, Asal & Yesilyurt, Serhat, 2023. "Numerical investigation of the effects of catalyst layer composition and channel to rib width ratios for low platinum loaded PEMFCs," Applied Energy, Elsevier, vol. 339(C).
    18. Siwen Gu & Jiaan Wang & Xinmin You & Yu Zhuang, 2023. "Investigating the Parameter-Driven Cathode Gas Diffusion of PEMFCs with a Piecewise Linearization Model," Energies, MDPI, vol. 16(9), pages 1-12, April.
    19. Jin Hyun Kim & Gwang Goo Lee & Woo Tae Kim, 2017. "Comparison of Liquid Water Dynamics in Bent Gas Channels of a Polymer Electrolyte Membrane Fuel Cell with Different Channel Cross Sections in a Channel Flooding Situation," Energies, MDPI, vol. 10(6), pages 1-18, May.
    20. Li, Xiang & Tang, Fumin & Wang, Qianqian & Li, Bing & Dai, Haifeng & Chang, Guofeng & Zhang, Cunman & Ming, Pingwen, 2023. "Effect of cathode catalyst layer on proton exchange membrane fuel cell performance: Considering the spatially variable distribution," Renewable Energy, Elsevier, vol. 212(C), pages 644-654.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6262-:d:899723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.