IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i16p3135-d257848.html
   My bibliography  Save this article

Smart Campus: An Experimental Performance Comparison of Collaborative and Cooperative Schemes for Wireless Sensor Network

Author

Listed:
  • Carolina Del-Valle-Soto

    (Facultad de Ingeniería, Universidad Panamericana, Álvaro del Portillo 49, Zapopan, Jalisco 45010, Mexico
    These authors contributed equally to this work.)

  • Leonardo J. Valdivia

    (Facultad de Ingeniería, Universidad Panamericana, Álvaro del Portillo 49, Zapopan, Jalisco 45010, Mexico
    These authors contributed equally to this work.)

  • Ramiro Velázquez

    (Facultad de Ingeniería, Universidad Panamericana, Josemaría Escrivá de Balaguer 101, Aguascalientes 20290, Mexico)

  • Luis Rizo-Dominguez

    (ITESO, Universidad Jesuita en Guadalajara, San Pedro Tlaquepaque 45604, Mexico
    These authors contributed equally to this work.)

  • Juan-Carlos López-Pimentel

    (Facultad de Ingeniería, Universidad Panamericana, Álvaro del Portillo 49, Zapopan, Jalisco 45010, Mexico)

Abstract

Presently, the Internet of Things (IoT) concept involves a scattered collection of different multipurpose sensor networks that capture information, which is further processed and used in applications such as smart cities. These networks can send large amounts of information in a fairly efficient but insecure wireless environment. Energy consumption is a key aspect of sensor networks since most of the time, they are battery powered and placed in not easily accessible locations. Therefore, and regardless of the final application, wireless sensor networks require a careful energy consumption analysis that allows selection of the best operating protocol and energy optimization scheme. In this paper, a set of performance metrics is defined to objectively compare different kinds of protocols. Four of the most popular IoT protocols are selected: Zigbee, LoRa, Bluethooth, and WiFi. To test and compare their performance, multiple sensors are placed at different points of a university campus to create a network that can accurately simulate a smart city. Finally, the network is analyzed in detail using two different schemes: collaborative and cooperative.

Suggested Citation

  • Carolina Del-Valle-Soto & Leonardo J. Valdivia & Ramiro Velázquez & Luis Rizo-Dominguez & Juan-Carlos López-Pimentel, 2019. "Smart Campus: An Experimental Performance Comparison of Collaborative and Cooperative Schemes for Wireless Sensor Network," Energies, MDPI, vol. 12(16), pages 1-23, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3135-:d:257848
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/16/3135/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/16/3135/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, In & Lee, Kyoochun, 2015. "The Internet of Things (IoT): Applications, investments, and challenges for enterprises," Business Horizons, Elsevier, vol. 58(4), pages 431-440.
    2. Babayo, Aliyu Aliyu & Anisi, Mohammad Hossein & Ali, Ihsan, 2017. "A Review on energy management schemes in energy harvesting wireless sensor networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1176-1184.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michela Borghetti & Edoardo Cantù & Emilio Sardini & Mauro Serpelloni, 2020. "Future Sensors for Smart Objects by Printing Technologies in Industry 4.0 Scenario," Energies, MDPI, vol. 13(22), pages 1-15, November.
    2. Francisco Maciá Pérez & José Vicente Berna Martínez & Iren Lorenzo Fonseca, 2021. "Modelling and Implementing Smart Universities: An IT Conceptual Framework," Sustainability, MDPI, vol. 13(6), pages 1-26, March.
    3. Carolina Del-Valle-Soto & Carlos Mex-Perera & Juan Arturo Nolazco-Flores & Ramiro Velázquez & Alberto Rossa-Sierra, 2020. "Wireless Sensor Network Energy Model and Its Use in the Optimization of Routing Protocols," Energies, MDPI, vol. 13(3), pages 1-33, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leonel Jorge Ribeiro Nunes & Radu Godina & João Carlos de Oliveira Matias, 2019. "Technological Innovation in Biomass Energy for the Sustainable Growth of Textile Industry," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
    2. Athanasios Tsipis & Asterios Papamichail & Ioannis Angelis & George Koufoudakis & Georgios Tsoumanis & Konstantinos Oikonomou, 2020. "An Alertness-Adjustable Cloud/Fog IoT Solution for Timely Environmental Monitoring Based on Wildfire Risk Forecasting," Energies, MDPI, vol. 13(14), pages 1-35, July.
    3. Bent Flyvbjerg & Alexander Budzier & Jong Seok Lee & Mark Keil & Daniel Lunn & Dirk W. Bester, 2022. "The Empirical Reality of IT Project Cost Overruns: Discovering A Power-Law Distribution," Papers 2210.01573, arXiv.org.
    4. Yao, Yao & Shen, Zhicheng & Wang, Qiliang & Du, Jiyun & Lu, Lin & Yang, Hongxing, 2023. "Development of an inline bidirectional micro crossflow turbine for hydropower harvesting from water supply pipelines," Applied Energy, Elsevier, vol. 329(C).
    5. Akhtar, Pervaiz & Khan, Zaheer & Tarba, Shlomo & Jayawickrama, Uchitha, 2018. "The Internet of Things, dynamic data and information processing capabilities, and operational agility," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 307-316.
    6. Li, Ying & Dai, Jing & Cui, Li, 2020. "The impact of digital technologies on economic and environmental performance in the context of industry 4.0: A moderated mediation model," International Journal of Production Economics, Elsevier, vol. 229(C).
    7. Thu-Hang Hoang & Thi-Trang Tran & Lam Nha Tu Huynh & Dung Khanh Vo & Bao Gia Huynh & Tam Minh Thi Tran & Nguyen Dang Nguyen, 2025. "Advances and barriers in promoting green logistics 4.0 from a multi-stakeholder perspective–a systematic review," Environment Systems and Decisions, Springer, vol. 45(2), pages 1-19, June.
    8. Kumar, V. & Ramachandran, Divya & Kumar, Binay, 2021. "Influence of new-age technologies on marketing: A research agenda," Journal of Business Research, Elsevier, vol. 125(C), pages 864-877.
    9. Madhukar Patil & M. Suresh, 2019. "Modelling the Enablers of Workforce Agility in IoT Projects: A TISM Approach," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 20(2), pages 157-175, June.
    10. Abdel Ghafar, Ahmed Ismail & Vazquez Castro, Ágeles & Essam Khedr, Mohamed, 2019. "Multidimensional Self-Organizing Chord-Based Networking for Internet of Things," 2nd Europe – Middle East – North African Regional ITS Conference, Aswan 2019: Leveraging Technologies For Growth 201736, International Telecommunications Society (ITS).
    11. Vasja Roblek & Maja Meško & Alojz Krapež, 2016. "A Complex View of Industry 4.0," SAGE Open, , vol. 6(2), pages 21582440166, June.
    12. Artur Pollak & Agata Hilarowicz & Maciej Walczak & Damian Gąsiorek, 2020. "A Framework of Action for Implementation of Industry 4.0. an Empirically Based Research," Sustainability, MDPI, vol. 12(14), pages 1-16, July.
    13. Daliborka Witschel & Julian Marius Müller & Kai-Ingo Voigt, 2023. "What Takes the Wind out of Their Sails? A Micro-Foundational Perspective of Challenges for Building Dynamic Capabilities Towards Digital Business Model Innovation," Schmalenbach Journal of Business Research, Springer, vol. 75(3), pages 345-388, September.
    14. Tan, Ting & Yan, Zhimiao & Zou, Hongxiang & Ma, Kejing & Liu, Fengrui & Zhao, Linchuan & Peng, Zhike & Zhang, Wenming, 2019. "Renewable energy harvesting and absorbing via multi-scale metamaterial systems for Internet of things," Applied Energy, Elsevier, vol. 254(C).
    15. Mahdi Zareei & Cesar Vargas-Rosales & Mohammad Hossein Anisi & Leila Musavian & Rafaela Villalpando-Hernandez & Shidrokh Goudarzi & Ehab Mahmoud Mohamed, 2019. "Enhancing the Performance of Energy Harvesting Sensor Networks for Environmental Monitoring Applications," Energies, MDPI, vol. 12(14), pages 1-14, July.
    16. Pillai, Rajasshrie & Sivathanu, Brijesh & Dwivedi, Yogesh K., 2020. "Shopping intention at AI-powered automated retail stores (AIPARS)," Journal of Retailing and Consumer Services, Elsevier, vol. 57(C).
    17. Zahra, Shaker A. & Liu, Wan & Si, Steven, 2023. "How digital technology promotes entrepreneurship in ecosystems," Technovation, Elsevier, vol. 119(C).
    18. Zhang, Yimeng & Ma, Xinyu & Pang, Jianing & Xing, Hailong & Wang, Jian, 2023. "The impact of digital transformation of manufacturing on corporate performance — The mediating effect of business model innovation and the moderating effect of innovation capability," Research in International Business and Finance, Elsevier, vol. 64(C).
    19. Jelena Končar & Aleksandar Grubor & Radenko Marić & Sonja Vučenović & Goran Vukmirović, 2020. "Setbacks to IoT Implementation in the Function of FMCG Supply Chain Sustainability during COVID-19 Pandemic," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    20. Sandeep Jagtap & George Skouteris & Vilendra Choudhari & Shahin Rahimifard & Linh Nguyen Khanh Duong, 2021. "An Internet of Things Approach for Water Efficiency: A Case Study of the Beverage Factory," Sustainability, MDPI, vol. 13(6), pages 1-10, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3135-:d:257848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.