IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i15p3006-d254638.html
   My bibliography  Save this article

Feasibility Study on Energy Audit and Data Driven Analysis Procedure for Building Energy Efficiency: Bench-Marking in Korean Hospital Buildings

Author

Listed:
  • Dong Kon Hwang

    (Department of Mechanical & Information Engineering, University of Seoul, Seoul 02504, Korea)

  • Jinkyun Cho

    (Department of Building and Plant Engineering, Hanbat National University, Daejeon 34158, Korea)

  • Junghwan Moon

    (Department of Building System Technology, Daelim University College, Anyang 13916, Korea)

Abstract

Growths in population, increasing demand for health care services and comfort levels, together with patients on the rise in time spent inside hospitals, assure the upward trend that energy demand will continue in the future. Since the hospital buildings operate 24 hours, 365 days a year for the treatment and restoration of patients, they are approximately 2–3 times more energy-intensive than normal buildings. For this reason, energy efficiency in hospitals is one of the prime objectives for energy policy at regional, national and international levels. This study aims to find how meaningful energy performance, reflecting good energy management and energy conservation measures (ECMs), can be operated for hospital buildings, a category encompassing complex buildings with different systems and large gaps between them. Energy audit allows us to obtain knowledge from the healthcare facility, in order to define and tune data driven analysis rules. The use of benchmarking in the energy audit of healthcare facilities enables immediate comparison between hospitals. Data driven energy analysis also allows ascertaining their expected energy consumption and estimating the possible savings margin by using the building energy flow chart. In the 2015–2017 periods, bench-marking of four public hospitals in Seoul were audited for the energy consumption related to weather conditions, total area, bed numbers, employee numbers, and analyzed for building energy flow by zones, energy sources, systems and equipment. This is a practice-based learning in a hospital project. The results reveal that the average annual energy consumption of a hospital under normal conditions, and energy efficiency factors are divided into energy baselines, energy consumption goals for energy saving and energy usage trends for setting ECMs, respectively. The indicator dependent on the area of inpatients (number of beds) proved to be the most suitable as a reference to quantify the energy consumption of a hospital.

Suggested Citation

  • Dong Kon Hwang & Jinkyun Cho & Junghwan Moon, 2019. "Feasibility Study on Energy Audit and Data Driven Analysis Procedure for Building Energy Efficiency: Bench-Marking in Korean Hospital Buildings," Energies, MDPI, vol. 12(15), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:3006-:d:254638
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/15/3006/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/15/3006/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2016. "Multi-stage and multi-objective optimization for energy retrofitting a developed hospital reference building: A new approach to assess cost-optimality," Applied Energy, Elsevier, vol. 174(C), pages 37-68.
    2. Wang, Tao & Li, Xiaodong & Liao, Pin-Chao & Fang, Dongping, 2016. "Building energy efficiency for public hospitals and healthcare facilities in China: Barriers and drivers," Energy, Elsevier, vol. 103(C), pages 588-597.
    3. Alfonso González González & Justo García-Sanz-Calcedo & David Rodríguez Salgado, 2018. "Evaluation of Energy Consumption in German Hospitals: Benchmarking in the Public Sector," Energies, MDPI, vol. 11(9), pages 1-14, August.
    4. Serafín Alonso & Antonio Morán & Miguel Ángel Prada & Perfecto Reguera & Juan José Fuertes & Manuel Domínguez, 2019. "A Data-Driven Approach for Enhancing the Efficiency in Chiller Plants: A Hospital Case Study," Energies, MDPI, vol. 12(5), pages 1-28, March.
    5. Lee, Dasheng & Cheng, Chin-Chi, 2016. "Energy savings by energy management systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 760-777.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vaziri, Shabnam Mahmoudzadeh & Rezaee, Babak & Monirian, Masoud Amel, 2020. "Utilizing renewable energy sources efficiently in hospitals using demand dispatch," Renewable Energy, Elsevier, vol. 151(C), pages 551-562.
    2. Khan Rahmat Ullah & Marudhappan Thirugnanasambandam & Rahman Saidur & Kazi Akikur Rahman & Md. Riaz Kayser, 2021. "Analysis of Energy Use and Energy Savings: A Case Study of a Condiment Industry in India," Energies, MDPI, vol. 14(16), pages 1-25, August.
    3. Rosa Francesca De Masi & Nicoletta Del Regno & Antonio Gigante & Silvia Ruggiero & Alessandro Russo & Francesco Tariello & Giuseppe Peter Vanoli, 2023. "The Importance of Investing in the Energy Refurbishment of Hospitals: Results of a Case Study in a Mediterranean Climate," Sustainability, MDPI, vol. 15(14), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chro Hama Radha, 2023. "Retrofitting for Improving Indoor Air Quality and Energy Efficiency in the Hospital Building," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    2. Maria Psillaki & Nikolaos Apostolopoulos & Ilias Makris & Panagiotis Liargovas & Sotiris Apostolopoulos & Panos Dimitrakopoulos & George Sklias, 2023. "Hospitals’ Energy Efficiency in the Perspective of Saving Resources and Providing Quality Services through Technological Options: A Systematic Literature Review," Energies, MDPI, vol. 16(2), pages 1-21, January.
    3. Păunescu Carmen & Blid Laura, 2016. "Effective energy planning for improving the enterprise’s energy performance," Management & Marketing, Sciendo, vol. 11(3), pages 512-531, September.
    4. Elena Stefana & Paola Cocca & Filippo Marciano & Diana Rossi & Giuseppe Tomasoni, 2019. "A Review of Energy and Environmental Management Practices in Cast Iron Foundries to Increase Sustainability," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    5. Ahmet Bircan Atmaca & Gülay Zorer Gedik & Andreas Wagner, 2021. "Determination of Optimum Envelope of Religious Buildings in Terms of Thermal Comfort and Energy Consumption: Mosque Cases," Energies, MDPI, vol. 14(20), pages 1-17, October.
    6. Witold Kawalec & Robert Król & Natalia Suchorab, 2020. "Regenerative Belt Conveyor versus Haul Truck-Based Transport: Polish Open-Pit Mines Facing Sustainable Development Challenges," Sustainability, MDPI, vol. 12(21), pages 1-15, November.
    7. Mohamed Hamdy & Gerardo Maria Mauro, 2017. "Multi-Objective Optimization of Building Energy Design to Reconcile Collective and Private Perspectives: CO 2 -eq vs. Discounted Payback Time," Energies, MDPI, vol. 10(7), pages 1-26, July.
    8. Harkouss, Fatima & Fardoun, Farouk & Biwole, Pascal Henry, 2018. "Passive design optimization of low energy buildings in different climates," Energy, Elsevier, vol. 165(PA), pages 591-613.
    9. Tahir Emre Kalaycı & Bor Bricelj & Marko Lah & Franz Pichler & Matthias K. Scharrer & Jelena Rubeša-Zrim, 2021. "A Knowledge Graph-Based Data Integration Framework Applied to Battery Data Management," Sustainability, MDPI, vol. 13(3), pages 1-17, February.
    10. Prada, A. & Gasparella, A. & Baggio, P., 2018. "On the performance of meta-models in building design optimization," Applied Energy, Elsevier, vol. 225(C), pages 814-826.
    11. Skoczkowski, Tadeusz & Verdolini, Elena & Bielecki, Sławomir & Kochański, Max & Korczak, Katarzyna & Węglarz, Arkadiusz, 2020. "Technology innovation system analysis of decarbonisation options in the EU steel industry," Energy, Elsevier, vol. 212(C).
    12. Soyeong Park & Seungwook Yoon & Byungtak Lee & Seokkap Ko & Euiseok Hwang, 2020. "Probabilistic Forecasting Based Joint Detection and Imputation of Clustered Bad Data in Residential Electricity Loads," Energies, MDPI, vol. 14(1), pages 1-13, December.
    13. Markovič, Rene & Gosak, Marko & Grubelnik, Vladimir & Marhl, Marko & Virtič, Peter, 2019. "Data-driven classification of residential energy consumption patterns by means of functional connectivity networks," Applied Energy, Elsevier, vol. 242(C), pages 506-515.
    14. Jee-Heon Kim & Nam-Chul Seong & Wonchang Choi, 2019. "Modeling and Optimizing a Chiller System Using a Machine Learning Algorithm," Energies, MDPI, vol. 12(15), pages 1-13, July.
    15. Abubakar, I. & Khalid, S.N. & Mustafa, M.W. & Shareef, Hussain & Mustapha, M., 2017. "Application of load monitoring in appliances’ energy management – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 235-245.
    16. Mahmud, Arafat & Dhrubo, Ehsan Ahmed & Ahmed, S. Shahnawaz & Chowdhury, Abdul Hasib & Hossain, Md. Farhad & Rahman, Hamidur & Masood, Nahid-Al, 2022. "Energy conservation for existing cooling and lighting loads," Energy, Elsevier, vol. 255(C).
    17. Iturriaga, E. & Aldasoro, U. & Campos-Celador, A. & Sala, J.M., 2017. "A general model for the optimization of energy supply systems of buildings," Energy, Elsevier, vol. 138(C), pages 954-966.
    18. Roberto Robledo-Fava & Mónica C. Hernández-Luna & Pedro Fernández-de-Córdoba & Humberto Michinel & Sonia Zaragoza & A Castillo-Guzman & Romeo Selvas-Aguilar, 2019. "Analysis of the Influence Subjective Human Parameters in the Calculation of Thermal Comfort and Energy Consumption of Buildings," Energies, MDPI, vol. 12(8), pages 1-23, April.
    19. Ascione, Fabrizio & Bianco, Nicola & Mauro, Gerardo Maria & Napolitano, Davide Ferdinando, 2019. "Retrofit of villas on Mediterranean coastlines: Pareto optimization with a view to energy-efficiency and cost-effectiveness," Applied Energy, Elsevier, vol. 254(C).
    20. Rosa Francesca De Masi & Nicoletta Del Regno & Antonio Gigante & Silvia Ruggiero & Alessandro Russo & Francesco Tariello & Giuseppe Peter Vanoli, 2023. "The Importance of Investing in the Energy Refurbishment of Hospitals: Results of a Case Study in a Mediterranean Climate," Sustainability, MDPI, vol. 15(14), pages 1-20, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:3006-:d:254638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.