IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1430-d1032886.html
   My bibliography  Save this article

A Rational Plan of Energy Performance Contracting in an Educational Building: A Case Study

Author

Listed:
  • Zulhazmi Hatta Mohamad Munir

    (Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia)

  • Norasikin Ahmad Ludin

    (Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia)

  • Mirratul Mukminah Junedi

    (Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia)

  • Nurfarhana Alyssa Ahmad Affandi

    (Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia)

  • Mohd Adib Ibrahim

    (Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia)

  • Mohd Asri Mat Teridi

    (Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia)

Abstract

Energy performance contracting (EPC) is the best solution for an educational building to implement energy conservation measures (ECMs) because of its high capital expenditure and operational expenditure needed for retrofit and maintenance. It is also considered a win–win mechanism for organising building energy efficiency retrofit projects. It aims to assist educational buildings in acquiring new high-efficiency equipment and maximising energy use reduction, as guaranteed by energy service company (ESCO). This study developed an EPC model using regression analysis, in which the inputs are based on the data collected during the preliminary energy audit in University A. As a result, with a quantum sharing ratio of 0.95/0.5 for ESCO/University A, the forecasted energy savings from the proposed ECMs, chiller optimisation and replacement, lighting retrofit, and energy management system are estimated to save 25.6% energy use, which reduces 5,672,057 kilowatt-hour (kWh) in electricity consumption; saves RM 2,762,291.76/year; carbon dioxide (CO 2 ) mitigation equal to 3,771,061.22 kgCO 2 /year; return of investment of 4.2 years with a 5% interest rate; and building energy intensity of 93.55 kWh/m 2 /year. A sensitivity analysis of various quantum sharing ratios found that the saving value of ESCO is inversely proportional to that of University A as the client when the quantum sharing ratio for the former is increasing.

Suggested Citation

  • Zulhazmi Hatta Mohamad Munir & Norasikin Ahmad Ludin & Mirratul Mukminah Junedi & Nurfarhana Alyssa Ahmad Affandi & Mohd Adib Ibrahim & Mohd Asri Mat Teridi, 2023. "A Rational Plan of Energy Performance Contracting in an Educational Building: A Case Study," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1430-:d:1032886
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1430/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1430/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xia, Xiaohua & Zhang, Jiangfeng, 2013. "Mathematical description for the measurement and verification of energy efficiency improvement," Applied Energy, Elsevier, vol. 111(C), pages 247-256.
    2. Aiguo Shen & Qiubo Ye & Guangsong Yang & Xinyu Hao, 2021. "M2M energy saving strategy in 5G millimeter wave system," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 78(4), pages 629-643, December.
    3. Serafín Alonso & Antonio Morán & Miguel Ángel Prada & Perfecto Reguera & Juan José Fuertes & Manuel Domínguez, 2019. "A Data-Driven Approach for Enhancing the Efficiency in Chiller Plants: A Hospital Case Study," Energies, MDPI, vol. 12(5), pages 1-28, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kagiri, Charles & Wanjiru, Evan M. & Zhang, Lijun & Xia, Xiaohua, 2018. "Optimized response to electricity time-of-use tariff of a compressed natural gas fuelling station," Applied Energy, Elsevier, vol. 222(C), pages 244-256.
    2. Ke, Ming-Tsun & Yeh, Chia-Hung & Su, Cheng-Jie, 2017. "Cloud computing platform for real-time measurement and verification of energy performance," Applied Energy, Elsevier, vol. 188(C), pages 497-507.
    3. Wanjiru, Evan M. & Sichilalu, Sam M. & Xia, Xiaohua, 2017. "Model predictive control of heat pump water heater-instantaneous shower powered with integrated renewable-grid energy systems," Applied Energy, Elsevier, vol. 204(C), pages 1333-1346.
    4. Ye, Xianming & Xia, Xiaohua, 2016. "Optimal metering plan for measurement and verification on a lighting case study," Energy, Elsevier, vol. 95(C), pages 580-592.
    5. Zhang, Lijun & Chennells, Michael & Xia, Xiaohua, 2018. "A power dispatch model for a ferrochrome plant heat recovery cogeneration system," Applied Energy, Elsevier, vol. 227(C), pages 180-189.
    6. Jee-Heon Kim & Nam-Chul Seong & Wonchang Choi, 2019. "Modeling and Optimizing a Chiller System Using a Machine Learning Algorithm," Energies, MDPI, vol. 12(15), pages 1-13, July.
    7. Liang, Xin & Hong, Tianzhen & Shen, Geoffrey Qiping, 2016. "Improving the accuracy of energy baseline models for commercial buildings with occupancy data," Applied Energy, Elsevier, vol. 179(C), pages 247-260.
    8. Carstens, Herman & Xia, Xiaohua & Yadavalli, Sarma, 2017. "Low-cost energy meter calibration method for measurement and verification," Applied Energy, Elsevier, vol. 188(C), pages 563-575.
    9. Ye, Xianming & Xia, Xiaohua & Zhang, Jiangfeng, 2014. "Optimal sampling plan for clean development mechanism lighting projects with lamp population decay," Applied Energy, Elsevier, vol. 136(C), pages 1184-1192.
    10. Albino, Vito & Ardito, Lorenzo & Dangelico, Rosa Maria & Messeni Petruzzelli, Antonio, 2014. "Understanding the development trends of low-carbon energy technologies: A patent analysis," Applied Energy, Elsevier, vol. 135(C), pages 836-854.
    11. Fan, Yuling & Xia, Xiaohua, 2018. "Building retrofit optimization models using notch test data considering energy performance certificate compliance," Applied Energy, Elsevier, vol. 228(C), pages 2140-2152.
    12. Ikuzwe, Alice & Xia, Xiaohua & Ye, Xianming, 2020. "Maintenance optimization incorporating lumen degradation failure for energy-efficient lighting retrofit projects," Applied Energy, Elsevier, vol. 267(C).
    13. Arun Shankar, Vishnu Kalaiselvan & Umashankar, Subramaniam & Paramasivam, Shanmugam & Hanigovszki, Norbert, 2016. "A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system," Applied Energy, Elsevier, vol. 181(C), pages 495-513.
    14. Guoying Lin & Yuyao Yang & Feng Pan & Sijian Zhang & Fen Wang & Shuai Fan, 2019. "An Optimal Energy-Saving Strategy for Home Energy Management Systems with Bounded Customer Rationality," Future Internet, MDPI, vol. 11(4), pages 1-16, April.
    15. Angeliki Mavrigiannaki & Kostas Gobakis & Dionysia Kolokotsa & Kostas Kalaitzakis & Anna Laura Pisello & Cristina Piselli & Rajat Gupta & Matt Gregg & Marina Laskari & Maria Saliari & Margarita-Niki A, 2020. "Measurement and Verification of Zero Energy Settlements: Lessons Learned from Four Pilot Cases in Europe," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
    16. Dong Kon Hwang & Jinkyun Cho & Junghwan Moon, 2019. "Feasibility Study on Energy Audit and Data Driven Analysis Procedure for Building Energy Efficiency: Bench-Marking in Korean Hospital Buildings," Energies, MDPI, vol. 12(15), pages 1-18, August.
    17. Carstens, Herman & Xia, Xiaohua & Yadavalli, Sarma, 2018. "Measurement uncertainty in energy monitoring: Present state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2791-2805.
    18. Carstens, Herman & Xia, Xiaohua & Ye, Xianming, 2014. "Improvements to longitudinal Clean Development Mechanism sampling designs for lighting retrofit projects," Applied Energy, Elsevier, vol. 126(C), pages 256-265.
    19. Olinga, Zadok & Xia, Xiaohua & Ye, Xianming, 2017. "A cost-effective approach to handle measurement and verification uncertainties of energy savings," Energy, Elsevier, vol. 141(C), pages 1600-1609.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1430-:d:1032886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.