IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i12p2414-d242355.html
   My bibliography  Save this article

Natural Ventilation Effectiveness of Awning Windows in Restrooms in K-12 Public Schools

Author

Listed:
  • Sung-Chin Chung

    (Department of Creative Design, National Yunlin University of Science and Technology, Douliu 640, Taiwan)

  • Yi-Pin Lin

    (Department of Creative Design, National Yunlin University of Science and Technology, Douliu 640, Taiwan)

  • Chun Yang

    (Department of Creative Design, National Yunlin University of Science and Technology, Douliu 640, Taiwan)

  • Chi-Ming Lai

    (Department of Civil Engineering, National Cheng Kung University, Tainan 701, Taiwan)

Abstract

Using computational fluid dynamics (CFD), this study explores the effect of a different number of awning windows and their installation locations on the airflow patterns and air contaminant distributions in restrooms in K-12 (for kindergarten to 12th grade) public schools in Taiwan. A representative restroom configuration with dimensions of 10.65 m × 9.2 m × 3.2 m (height) was selected as the investigated object. Based on the façade design feasibility, seven possible awning window configurations were considered. The results indicate that an adequate number of windows and appropriate installation locations are required to ensure the natural ventilation effectiveness of awning windows. The recommended installation configuration is provided.

Suggested Citation

  • Sung-Chin Chung & Yi-Pin Lin & Chun Yang & Chi-Ming Lai, 2019. "Natural Ventilation Effectiveness of Awning Windows in Restrooms in K-12 Public Schools," Energies, MDPI, vol. 12(12), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2414-:d:242355
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/12/2414/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/12/2414/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jomehzadeh, Fatemeh & Nejat, Payam & Calautit, John Kaiser & Yusof, Mohd Badruddin Mohd & Zaki, Sheikh Ahmad & Hughes, Ben Richard & Yazid, Muhammad Noor Afiq Witri Muhammad, 2017. "A review on windcatcher for passive cooling and natural ventilation in buildings, Part 1: Indoor air quality and thermal comfort assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 736-756.
    2. Nomura, Mika & Hiyama, Kyosuke, 2017. "A review: Natural ventilation performance of office buildings in Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 746-754.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhonghua Zhang & Lingjie Zeng & Huixian Shi & Hua Liu & Wenjun Yin & Haowen Shen & Libin Yang & Jun Gao & Lina Wang & Yalei Zhang & Xuefei Zhou, 2021. "CFD Study on the Ventilation Effectiveness in a Public Toilet under Three Ventilation Methods," Energies, MDPI, vol. 14(24), pages 1-25, December.
    2. Zhonghua Zhang & Lingjie Zeng & Huixian Shi & Gukun Yang & Zhenjiang Yu & Wenjun Yin & Jun Gao & Lina Wang & Yalei Zhang & Xuefei Zhou, 2021. "Dynamics and Numerical Simulation of Contaminant Diffusion for a Non-Flushing Ecological Toilet," Energies, MDPI, vol. 14(22), pages 1-22, November.
    3. Jorge de Brito & M. Glória Gomes, 2020. "Special Issue “Building Thermal Envelope”," Energies, MDPI, vol. 13(5), pages 1-5, February.
    4. Yi-Pin Lin, 2021. "Natural Ventilation of Toilet Units in K–12 School Restrooms Using CFD," Energies, MDPI, vol. 14(16), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Halil Zafer Alibaba, 2018. "Heat and Air Flow Behavior of Naturally Ventilated Offices in a Mediterranean Climate," Sustainability, MDPI, vol. 10(9), pages 1-23, September.
    2. Montazeri, H. & Montazeri, F., 2018. "CFD simulation of cross-ventilation in buildings using rooftop wind-catchers: Impact of outlet openings," Renewable Energy, Elsevier, vol. 118(C), pages 502-520.
    3. Liwei Wen & Kyosuke Hiyama, 2018. "Target Air Change Rate and Natural Ventilation Potential Maps for Assisting with Natural Ventilation Design During Early Design Stage in China," Sustainability, MDPI, vol. 10(5), pages 1-16, May.
    4. Farshad Amiraslani, 2021. "‘Environmental Impact Assessment’ in Drylands: Late Knowledge Penetration or a Deliberate Ignorance for Megaprojects?," World, MDPI, vol. 2(3), pages 1-5, July.
    5. Payam Nejat & Fatemeh Jomehzadeh & Hasanen Mohammed Hussen & John Kaiser Calautit & Muhd Zaimi Abd Majid, 2018. "Application of Wind as a Renewable Energy Source for Passive Cooling through Windcatchers Integrated with Wing Walls," Energies, MDPI, vol. 11(10), pages 1-23, September.
    6. Ahmed, Tariq & Kumar, Prashant & Mottet, Laetitia, 2021. "Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience and indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    7. I-Ming Feng & Jun-Hong Chen & Bo-Wei Zhu & Lei Xiong, 2018. "Assessment of and Improvement Strategies for the Housing of Healthy Elderly: Improving Quality of Life," Sustainability, MDPI, vol. 10(3), pages 1-32, March.
    8. María Nuria Sánchez & Emanuela Giancola & Eduardo Blanco & Silvia Soutullo & María José Suárez, 2019. "Experimental Validation of a Numerical Model of a Ventilated Façade with Horizontal and Vertical Open Joints," Energies, MDPI, vol. 13(1), pages 1-16, December.
    9. Jinghua Yu & Kangxin Leng & Feifei Wang & Hong Ye & Yongqiang Luo, 2020. "Simulation Study on Dynamic Thermal Performance of a New Ventilated Roof with Form-Stable PCM in Southern China," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    10. Calautit, John Kaiser & O’Connor, Dominic & Tien, Paige Wenbin & Wei, Shuangyu & Pantua, Conrad Allan Jay & Hughes, Ben, 2020. "Development of a natural ventilation windcatcher with passive heat recovery wheel for mild-cold climates: CFD and experimental analysis," Renewable Energy, Elsevier, vol. 160(C), pages 465-482.
    11. Hessam Taherian & Robert W. Peters, 2023. "Advanced Active and Passive Methods in Residential Energy Efficiency," Energies, MDPI, vol. 16(9), pages 1-19, May.
    12. Murtaza Mohammadi & John Kaiser Calautit, 2019. "Numerical Investigation of the Wind and Thermal Conditions in Sky Gardens in High-Rise Buildings," Energies, MDPI, vol. 12(7), pages 1-33, April.
    13. Pouranian, Fatemeh & Akbari, Habibollah & Hosseinalipour, S.M., 2021. "Performance assessment of solar chimney coupled with earth-to-air heat exchanger: A passive alternative for an indoor swimming pool ventilation in hot-arid climate," Applied Energy, Elsevier, vol. 299(C).
    14. Sakiyama, N.R.M. & Carlo, J.C. & Frick, J. & Garrecht, H., 2020. "Perspectives of naturally ventilated buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    15. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    16. Miranda, Nicole D. & Renaldi, Renaldi & Khosla, Radhika & McCulloch, Malcolm D., 2021. "Bibliometric analysis and landscape of actors in passive cooling research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    17. Pradeep Shakya & Gimson Ng & Xiaoli Zhou & Yew Wah Wong & Swapnil Dubey & Shunzhi Qian, 2021. "Thermal Comfort and Energy Analysis of a Hybrid Cooling System by Coupling Natural Ventilation with Radiant and Indirect Evaporative Cooling," Energies, MDPI, vol. 14(22), pages 1-19, November.
    18. Michael Strobel & Uli Jakob & Wolfgang Streicher & Daniel Neyer, 2023. "Spatial Distribution of Future Demand for Space Cooling Applications and Potential of Solar Thermal Cooling Systems," Sustainability, MDPI, vol. 15(12), pages 1-32, June.
    19. Saroglou, Tanya & Theodosiou, Theodoros & Givoni, Baruch & Meir, Isaac A., 2019. "A study of different envelope scenarios towards low carbon high-rise buildings in the Mediterranean climate - can DSF be part of the solution?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    20. Momoka Nagasue & Haruka Kitagawa & Takashi Asawa & Tetsu Kubota, 2024. "A Systematic Review of Passive Cooling Methods in Hot and Humid Climates Using a Text Mining-Based Bibliometric Approach," Sustainability, MDPI, vol. 16(4), pages 1-29, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2414-:d:242355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.