IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v74y2017icp746-754.html
   My bibliography  Save this article

A review: Natural ventilation performance of office buildings in Japan

Author

Listed:
  • Nomura, Mika
  • Hiyama, Kyosuke

Abstract

Natural ventilation is an effective strategy for reducing energy use in buildings. The effect is especially significant for buildings with high internal heat generation, such as commercial office buildings. Therefore, naturally ventilated office buildings are becoming increasingly popular in Japan. In this paper, monitoring and measurement results from Japanese studies are reviewed. Thirty buildings are selected for the review based on the search results obtained using a Japanese search engine for academic papers. To identify trends in the design of naturally ventilated buildings, the representative air change rates are compared. The values range from 1 to 10ac/h, and no specific peak is observed. In addition, no strong correlation is found between the air change rates and floor areas. These results suggest that the natural ventilation performance depends considerably on the design. Additionally, the natural ventilation performance is highly dependent on the building shape, which is generally discussed during the early stages of building design. In this context, it is important to create a clear target air change rate within the range of achievable values for natural ventilation design in the early design stage and to consider this target throughout the building design process.

Suggested Citation

  • Nomura, Mika & Hiyama, Kyosuke, 2017. "A review: Natural ventilation performance of office buildings in Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 746-754.
  • Handle: RePEc:eee:rensus:v:74:y:2017:i:c:p:746-754
    DOI: 10.1016/j.rser.2017.02.083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117303131
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.02.083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pradeep Shakya & Gimson Ng & Xiaoli Zhou & Yew Wah Wong & Swapnil Dubey & Shunzhi Qian, 2021. "Thermal Comfort and Energy Analysis of a Hybrid Cooling System by Coupling Natural Ventilation with Radiant and Indirect Evaporative Cooling," Energies, MDPI, vol. 14(22), pages 1-19, November.
    2. Sakiyama, N.R.M. & Carlo, J.C. & Frick, J. & Garrecht, H., 2020. "Perspectives of naturally ventilated buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    3. Halil Zafer Alibaba, 2018. "Heat and Air Flow Behavior of Naturally Ventilated Offices in a Mediterranean Climate," Sustainability, MDPI, vol. 10(9), pages 1-23, September.
    4. Sung-Chin Chung & Yi-Pin Lin & Chun Yang & Chi-Ming Lai, 2019. "Natural Ventilation Effectiveness of Awning Windows in Restrooms in K-12 Public Schools," Energies, MDPI, vol. 12(12), pages 1-14, June.
    5. Saroglou, Tanya & Theodosiou, Theodoros & Givoni, Baruch & Meir, Isaac A., 2019. "A study of different envelope scenarios towards low carbon high-rise buildings in the Mediterranean climate - can DSF be part of the solution?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    6. Liwei Wen & Kyosuke Hiyama, 2018. "Target Air Change Rate and Natural Ventilation Potential Maps for Assisting with Natural Ventilation Design During Early Design Stage in China," Sustainability, MDPI, vol. 10(5), pages 1-16, May.
    7. I-Ming Feng & Jun-Hong Chen & Bo-Wei Zhu & Lei Xiong, 2018. "Assessment of and Improvement Strategies for the Housing of Healthy Elderly: Improving Quality of Life," Sustainability, MDPI, vol. 10(3), pages 1-32, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:74:y:2017:i:c:p:746-754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.