IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3249-d1684177.html
   My bibliography  Save this article

An Experimental Study of Wind-Driven Ventilation with Double Skin Facade During Transition Seasons

Author

Listed:
  • Guoqing He

    (College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
    Center for Balance Architecture, Zhejiang University, Hangzhou 310058, China)

  • Zhewen Fan

    (College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China)

  • Yuan Meng

    (College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China)

  • Linfeng Yao

    (Center for Balance Architecture, Zhejiang University, Hangzhou 310058, China
    The Architectural Design & Research Institute of Zhejiang University Co., Ltd., Hangzhou 310058, China)

  • Changqing Ye

    (Center for Balance Architecture, Zhejiang University, Hangzhou 310058, China
    The Architectural Design & Research Institute of Zhejiang University Co., Ltd., Hangzhou 310058, China)

Abstract

Double skin facade (DSF) is an energy-efficient solution for glazing facades. However, previous studies have reported inconsistent findings regarding thermal comfort in naturally ventilated DSF buildings. To examine this issue, this study evaluated airflow velocities in naturally ventilated DSF buildings during transition seasons through a comparative study approach. A full-scale box-type DSF room and a traditional window-wall room were simultaneously monitored in a laboratory building under real climatic conditions, with indoor environmental parameters recorded for 10 days. Airflow sensation surveys complemented the physical measurements to evaluate perceived comfort. The results showed that the DSF room consistently exhibited lower air velocities (≤0.2 m/s) compared to the traditional room, demonstrating minimal response to wind conditions related to its small openings (opening ratio of 4.7%) and increased flow resistance from the dual-layer structure of the DSF. Under unfavorable wind conditions, the DSF room demonstrated higher ventilation rates due to the enhanced stack effect. However, this advantage had a negligible effect on the thermal comfort vote for the indoor temperature range (26 °C to 28 °C). These findings highlight the climate-dependent performance of DSFs: while advantageous for thermal comfort in cooler climates, they may lead to reduced thermal comfort in warm and hot climates due to low indoor airflow velocities. Future work could include the optimization of DSF opening configurations to enhance wind-driven ventilation while maintaining stack ventilation benefits.

Suggested Citation

  • Guoqing He & Zhewen Fan & Yuan Meng & Linfeng Yao & Changqing Ye, 2025. "An Experimental Study of Wind-Driven Ventilation with Double Skin Facade During Transition Seasons," Energies, MDPI, vol. 18(13), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3249-:d:1684177
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3249/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3249/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3249-:d:1684177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.