IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i12p2273-d239609.html
   My bibliography  Save this article

Feedback Linearization and Reaching Law Based Sliding Mode Control Design for Nonlinear Hydraulic Turbine Governing System

Author

Listed:
  • Bicheng Guo

    (Key Laboratory of Transients in Hydraulic Machinery, Ministry of Education, Wuhan University, Wuhan 430072, China)

  • Jiang Guo

    (Key Laboratory of Transients in Hydraulic Machinery, Ministry of Education, Wuhan University, Wuhan 430072, China)

Abstract

Hydropower as renewable energy has continually expanded at a relatively high rate in the last decade. This expansion calls for more accurate scheme design in hydraulic turbine governing system (HTGS) to ensure its high efficiency. Sliding mode control (SMC) as a robust control method which is insensitive to system uncertainties and disturbances raises interest in the application in HTGS. However, the feature of highly coupled state variables reflects the nonlinear essence of HTGS and SMC studies on the related mathematical model under certain fluctuations are not satisfied. In this regard, a novel SMC design with proportional-integral-derivative manifold is firstly applied to a nonlinear HTGS with a complex conduit system. In dealing with certain fluctuations in speed and load around the rated working condition, the proposed SMC is capable of driving the system to the desired state with smooth and light responses in aspects of the key state variables. The exponential reaching law and introduced boundary layer fasten the speed of converging time and suppress chattering. A necessary integral of sliding parameter added to manifold successfully reduces the latency caused by the anti-regulation feature of HTGS. Three operating scenarios are simulated compared with the PSO-PID method, and results imply that the proposed SMC method equips with accurate trajectory tracking ability and smooth responses. Finally, the strong robustness against system uncertainties is tested.

Suggested Citation

  • Bicheng Guo & Jiang Guo, 2019. "Feedback Linearization and Reaching Law Based Sliding Mode Control Design for Nonlinear Hydraulic Turbine Governing System," Energies, MDPI, vol. 12(12), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2273-:d:239609
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/12/2273/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/12/2273/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nguyen, Cuong M. & Pathirana, Pubudu N. & Trinh, Hieu, 2019. "Robust observer and observer-based control designs for discrete one-sided Lipschitz systems subject to uncertainties and disturbances," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 42-53.
    2. Chen, Zhihuan & Yuan, Xiaohui & Yuan, Yanbin & Lei, Xiaohui & Zhang, Binqiao, 2019. "Parameter estimation of fuzzy sliding mode controller for hydraulic turbine regulating system based on HICA algorithm," Renewable Energy, Elsevier, vol. 133(C), pages 551-565.
    3. Yuan, Xiaohui & Chen, Zhihuan & Yuan, Yanbin & Huang, Yuehua & Li, Xianshan & Li, Wenwu, 2016. "Sliding mode controller of hydraulic generator regulating system based on the input/output feedback linearization method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 119(C), pages 18-34.
    4. Wencheng Guo, 2018. "Nonlinear Disturbance Decoupling Control for Hydro-Turbine Governing System with Sloping Ceiling Tailrace Tunnel Based on Differential Geometry Theory," Energies, MDPI, vol. 11(12), pages 1-21, November.
    5. Linyun Xiong & Penghan Li & Hao Li & Jie Wang, 2017. "Sliding Mode Control of DFIG Wind Turbines with a Fast Exponential Reaching Law," Energies, MDPI, vol. 10(11), pages 1-19, November.
    6. Guo, Wencheng & Yang, Jiandong, 2018. "Modeling and dynamic response control for primary frequency regulation of hydro-turbine governing system with surge tank," Renewable Energy, Elsevier, vol. 121(C), pages 173-187.
    7. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian, 2019. "China’s large-scale hydropower system: operation characteristics, modeling challenge and dimensionality reduction possibilities," Renewable Energy, Elsevier, vol. 136(C), pages 805-818.
    8. Kishor, Nand & Saini, R.P. & Singh, S.P., 2007. "A review on hydropower plant models and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 776-796, June.
    9. Klemen Nagode & Igor Škrjanc, 2014. "Modelling and Internal Fuzzy Model Power Control of a Francis Water Turbine," Energies, MDPI, vol. 7(2), pages 1-16, February.
    10. Yang, Weijia & Norrlund, Per & Bladh, Johan & Yang, Jiandong & Lundin, Urban, 2018. "Hydraulic damping mechanism of low frequency oscillations in power systems: Quantitative analysis using a nonlinear model of hydropower plants," Applied Energy, Elsevier, vol. 212(C), pages 1138-1152.
    11. Long-Yi Chang & Hung-Cheng Chen, 2014. "Linearization and Input-Output Decoupling for Nonlinear Control of Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 7(2), pages 1-16, January.
    12. Shivarama Krishna, K. & Sathish Kumar, K., 2015. "A review on hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 907-916.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuqiang Tian & Bin Wang & Diyi Chen & Shaokun Wang & Peng Chen & Ying Yang, 2019. "Design of a Nonlinear Predictive Controller for a Fractional-Order Hydraulic Turbine Governing System with Mechanical Time Delay," Energies, MDPI, vol. 12(24), pages 1-16, December.
    2. Zaher Mundher Yaseen & Ameen Mohammed Salih Ameen & Mohammed Suleman Aldlemy & Mumtaz Ali & Haitham Abdulmohsin Afan & Senlin Zhu & Ahmed Mohammed Sami Al-Janabi & Nadhir Al-Ansari & Tiyasha Tiyasha &, 2020. "State-of-the Art-Powerhouse, Dam Structure, and Turbine Operation and Vibrations," Sustainability, MDPI, vol. 12(4), pages 1-40, February.
    3. Zou, Yidong & Hu, Wenqing & Xiao, Zhihuai & Wang, Yunhe & Chen, Jinbao & Zheng, Yang & Qian, Jing & Zeng, Yun, 2023. "Design of intelligent nonlinear robust controller for hydro-turbine governing system based on state-dynamic-measurement hybrid feedback linearization method," Renewable Energy, Elsevier, vol. 204(C), pages 635-651.
    4. Lisheng Li & Jing Qian & Yidong Zou & Danning Tian & Yun Zeng & Fei Cao & Xiang Li, 2022. "Optimized Takagi–Sugeno Fuzzy Mixed H 2 / H ∞ Robust Controller Design Based on CPSOGSA Optimization Algorithm for Hydraulic Turbine Governing System," Energies, MDPI, vol. 15(13), pages 1-31, June.
    5. Antonio T. Alexandridis, 2020. "Modern Power System Dynamics, Stability and Control," Energies, MDPI, vol. 13(15), pages 1-8, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Beibei & Zhang, Jingjing & Egusquiza, Mònica & Chen, Diyi & Li, Feng & Behrens, Paul & Egusquiza, Eduard, 2021. "A review of dynamic models and stability analysis for a hydro-turbine governing system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Chen, Zhihuan & Yuan, Xiaohui & Yuan, Yanbin & Lei, Xiaohui & Zhang, Binqiao, 2019. "Parameter estimation of fuzzy sliding mode controller for hydraulic turbine regulating system based on HICA algorithm," Renewable Energy, Elsevier, vol. 133(C), pages 551-565.
    3. Qi Yang & Jing Qian & Jia Li & Yidong Zou & Danning Tian & Yun Zeng & Yan Long & Ganyuan Zhang, 2023. "A New Integral Sliding Mode Control for Hydraulic Turbine Governing Systems Based on Nonlinear Disturbance Observer Compensation," Sustainability, MDPI, vol. 15(17), pages 1-21, August.
    4. Zou, Yidong & Hu, Wenqing & Xiao, Zhihuai & Wang, Yunhe & Chen, Jinbao & Zheng, Yang & Qian, Jing & Zeng, Yun, 2023. "Design of intelligent nonlinear robust controller for hydro-turbine governing system based on state-dynamic-measurement hybrid feedback linearization method," Renewable Energy, Elsevier, vol. 204(C), pages 635-651.
    5. Vinod, J. & Sarkar, Bikash K. & Sanyal, Dipankar, 2022. "Flow control in a small Francis turbine by system identification and fuzzy adaptation of PID and deadband controllers," Renewable Energy, Elsevier, vol. 201(P2), pages 87-99.
    6. Zhao, Zhigao & Yang, Jiandong & Chung, C.Y. & Yang, Weijia & He, Xianghui & Chen, Man, 2021. "Performance enhancement of pumped storage units for system frequency support based on a novel small signal model," Energy, Elsevier, vol. 234(C).
    7. Chang Xu & Dianwei Qian, 2015. "Governor Design for a Hydropower Plant with an Upstream Surge Tank by GA-Based Fuzzy Reduced-Order Sliding Mode," Energies, MDPI, vol. 8(12), pages 1-16, November.
    8. Liu, Yang & Guo, Wencheng, 2021. "Multi-frequency dynamic performance of hydropower plant under coupling effect of power grid and turbine regulating system with surge tank," Renewable Energy, Elsevier, vol. 171(C), pages 557-581.
    9. Liu, Dong & Li, Chaoshun & Malik, O.P., 2021. "Nonlinear modeling and multi-scale damping characteristics of hydro-turbine regulation systems under complex variable hydraulic and electrical network structures," Applied Energy, Elsevier, vol. 293(C).
    10. Chen, Zi & Guo, Wencheng, 2023. "Stability and dynamic response of two-stage hydropower stations cascaded by regulating reservoir," Renewable Energy, Elsevier, vol. 202(C), pages 651-666.
    11. Zhao, Zhigao & Yang, Jiandong & Huang, Yifan & Yang, Weijia & Ma, Weichao & Hou, Liangyu & Chen, Man, 2021. "Improvement of regulation quality for hydro-dominated power system: quantifying oscillation characteristic and multi-objective optimization," Renewable Energy, Elsevier, vol. 168(C), pages 606-631.
    12. Huang, Yifan & Yang, Weijia & Liao, Yiwen & Zhao, Zhigao & Ma, Weichao & Yang, Jiebin & Yang, Jiandong, 2022. "Improved transfer function method for flexible simulation of hydraulic-mechanical-electrical transient processes of hydro-power plants," Renewable Energy, Elsevier, vol. 196(C), pages 390-404.
    13. Huang, Sunhua & Zhou, Bin & Bu, Siqi & Li, Canbing & Zhang, Cong & Wang, Huaizhi & Wang, Tao, 2019. "Robust fixed-time sliding mode control for fractional-order nonlinear hydro-turbine governing system," Renewable Energy, Elsevier, vol. 139(C), pages 447-458.
    14. Andrey Achitaev & Pavel Ilyushin & Konstantin Suslov & Sergey Kobyletski, 2022. "Dynamic Simulation of Starting and Emergency Conditions of a Hydraulic Unit Based on a Francis Turbine," Energies, MDPI, vol. 15(21), pages 1-18, October.
    15. Lisheng Li & Jing Qian & Yidong Zou & Danning Tian & Yun Zeng & Fei Cao & Xiang Li, 2022. "Optimized Takagi–Sugeno Fuzzy Mixed H 2 / H ∞ Robust Controller Design Based on CPSOGSA Optimization Algorithm for Hydraulic Turbine Governing System," Energies, MDPI, vol. 15(13), pages 1-31, June.
    16. Huang, Sunhua & Xiong, Linyun & Wang, Jie & Li, Penghan & Wang, Ziqiang & Ma, Meilng, 2020. "Fixed-time synergetic controller for stabilization of hydraulic turbine regulating system," Renewable Energy, Elsevier, vol. 157(C), pages 1233-1242.
    17. Tian, Yuqiang & Wang, Bin & Chen, Peng & Yang, Ying, 2021. "Finite-time Takagi–Sugeno fuzzy controller design for hydraulic turbine governing systems with mechanical time delays," Renewable Energy, Elsevier, vol. 173(C), pages 614-624.
    18. Liu, Dong & Li, Chaoshun & Tan, Xiaoqiang & Lu, Xueding & Malik, O.P., 2021. "Damping characteristics analysis of hydropower units under full operating conditions and control parameters: Accurate quantitative evaluation based on refined models," Applied Energy, Elsevier, vol. 292(C).
    19. Wencheng Guo, 2019. "A Review of the Hydraulic Transient and Dynamic Behavior of Hydropower Plants with Sloping Ceiling Tailrace Tunnels," Energies, MDPI, vol. 12(17), pages 1-28, August.
    20. Shi, Yousong & Zhou, Jianzhong & Guo, Wencheng & Zheng, Yang & Li, Chaoshun & Zhang, Yongchuan, 2022. "Nonlinear dynamic characteristics analysis and adaptive avoid vortex-coordinated optimal control of hydropower units under grid connection," Renewable Energy, Elsevier, vol. 200(C), pages 911-930.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2273-:d:239609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.