IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v201y2022ip2p87-99.html

Flow control in a small Francis turbine by system identification and fuzzy adaptation of PID and deadband controllers

Author

Listed:
  • Vinod, J.
  • Sarkar, Bikash K.
  • Sanyal, Dipankar

Abstract

The ever-escalating power-demand together with depletion of fossil-fuel reserve and increasing-thrust on using climate-friendly system drive the transition to higher use of sustainable-green-energy. There is an immense need of harnessing hydraulic power from runaway-streams in hill-areas from small-hydropower-installations. A laboratory-scale system with Francis-turbine has been set-up with low-cost easily-maintainable electrohydraulic-actuation system for controlling the opening of the inlet-guide-vanes. The actuation system has a proportional-valve and cylinder. Deadband-nonlinearities due to the valve-overlap and cylinder-friction in this system along with large-disturbances in both the connected-load and the upstream-water head have been tackled by appropriate system-modelling supplemented by identification of the model-parameters. These parameters have been estimated by carrying-out steady-state-performance test at a rated-speed of the turbine combined with simulation of the model. A real-coded-genetic-algorithm has been used for parameter-updating the aiming minimum deviation between the experimental-variation of the turbine-efficiency against discharge and the evolving simulation-prediction. This model has been utilized for extracting the demand of the guide-vane-actuation-system in the face of head and power-disturbances. A controller with fuzzy-tuned PI-gains and a nonlinear deadband function has been proposed. Experimental-results demonstrate successful-tackling of large-power disturbances by the containment of the maximum-departure of the turbine speed in the open-loop from the rated-value to only 0.156%.

Suggested Citation

  • Vinod, J. & Sarkar, Bikash K. & Sanyal, Dipankar, 2022. "Flow control in a small Francis turbine by system identification and fuzzy adaptation of PID and deadband controllers," Renewable Energy, Elsevier, vol. 201(P2), pages 87-99.
  • Handle: RePEc:eee:renene:v:201:y:2022:i:p2:p:87-99
    DOI: 10.1016/j.renene.2022.11.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122016792
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.11.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Huadong & Shan, Shiquan & Zhou, Zhijun, 2022. "Parametric optimization of a novel solar concentrating photovoltaic-near field thermophotovoltaic hybrid system based on cascade utilization of full-spectrum solar energy," Renewable Energy, Elsevier, vol. 196(C), pages 1443-1454.
    2. Alexander, K.V. & Giddens, E.P., 2008. "Microhydro: Cost-effective, modular systems for low heads," Renewable Energy, Elsevier, vol. 33(6), pages 1379-1391.
    3. Cobb, Bryan R. & Sharp, Kendra V., 2013. "Impulse (Turgo and Pelton) turbine performance characteristics and their impact on pico-hydro installations," Renewable Energy, Elsevier, vol. 50(C), pages 959-964.
    4. Guo, Wencheng & Yang, Jiandong, 2018. "Dynamic performance analysis of hydro-turbine governing system considering combined effect of downstream surge tank and sloping ceiling tailrace tunnel," Renewable Energy, Elsevier, vol. 129(PA), pages 638-651.
    5. Kishor, Nand & Saini, R.P. & Singh, S.P., 2007. "A review on hydropower plant models and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 776-796, June.
    6. Venkaiah, P. & Sarkar, Bikash K., 2020. "Hydraulically actuated horizontal axis wind turbine pitch control by model free adaptive controller," Renewable Energy, Elsevier, vol. 147(P1), pages 55-68.
    7. Mishra, Mukesh Kumar & Khare, Nilay & Agrawal, Alka Bani, 2015. "Small hydro power in India: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 101-115.
    8. Kuriqi, Alban & Pinheiro, António N. & Sordo-Ward, Alvaro & Bejarano, María D. & Garrote, Luis, 2021. "Ecological impacts of run-of-river hydropower plants—Current status and future prospects on the brink of energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    9. Li, Huanhuan & Chen, Diyi & Zhang, Hao & Wu, Changzhi & Wang, Xiangyu, 2017. "Hamiltonian analysis of a hydro-energy generation system in the transient of sudden load increasing," Applied Energy, Elsevier, vol. 185(P1), pages 244-253.
    10. Klemen Nagode & Igor Škrjanc, 2014. "Modelling and Internal Fuzzy Model Power Control of a Francis Water Turbine," Energies, MDPI, vol. 7(2), pages 1-16, February.
    11. Paish, Oliver, 2002. "Small hydro power: technology and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(6), pages 537-556, December.
    12. Alexander, K.V. & Giddens, E.P. & Fuller, A.M., 2009. "Axial-flow turbines for low head microhydro systems," Renewable Energy, Elsevier, vol. 34(1), pages 35-47.
    13. Zaaoumi, Anass & Bah, Abdellah & Ciocan, Mihaela & Sebastian, Patrick & Balan, Mugur C. & Mechaqrane, Abdellah & Alaoui, Mohammed, 2021. "Estimation of the energy production of a parabolic trough solar thermal power plant using analytical and artificial neural networks models," Renewable Energy, Elsevier, vol. 170(C), pages 620-638.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiuli Mao & Jiaren Hu & Zhongyong Pan & Pengju Zhong & Ning Zhang, 2025. "A Brief Review of Recent Research on Reversible Francis Pump Turbines in Pumped Storage Plants," Energies, MDPI, vol. 18(2), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laghari, J.A. & Mokhlis, H. & Bakar, A.H.A. & Mohammad, Hasmaini, 2013. "A comprehensive overview of new designs in the hydraulic, electrical equipments and controllers of mini hydro power plants making it cost effective technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 279-293.
    2. Stark, B.H. & Andò, E. & Hartley, G., 2011. "Modelling and performance of a small siphonic hydropower system," Renewable Energy, Elsevier, vol. 36(9), pages 2451-2464.
    3. Tapia, A. & Millán, P. & Gómez-Estern, F., 2018. "Integer programming to optimize Micro-Hydro Power Plants for generic river profiles," Renewable Energy, Elsevier, vol. 126(C), pages 905-914.
    4. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zhao, Zhigao & Yang, Jiandong, 2023. "Transient analysis of a hydropower plant with a super-long headrace tunnel during load acceptance: Instability mechanism and measurement verification," Energy, Elsevier, vol. 263(PA).
    5. Joe Butchers & Shaun Benzon & Sam Williamson & Julian Booker & George Aggidis, 2021. "A Rationalised CFD Design Methodology for Turgo Turbines to Enable Local Manufacture in the Global South," Energies, MDPI, vol. 14(19), pages 1-23, October.
    6. Jiaxin Yu & Jun Wang, 2020. "Optimization Design of a Rain-Power Utilization System Based on a Siphon and Its Application in a High-Rise Building," Energies, MDPI, vol. 13(18), pages 1-18, September.
    7. Elgammi, Moutaz & Hamad, Abduljawad Ashour, 2022. "A feasibility study of operating a low static pressure head micro pelton turbine based on water hammer phenomenon," Renewable Energy, Elsevier, vol. 195(C), pages 1-16.
    8. Sotoude Haghighi, M.H. & Mirghavami, S.M. & Chini, S.F. & Riasi, A., 2019. "Developing a method to design and simulation of a very low head axial turbine with adjustable rotor blades," Renewable Energy, Elsevier, vol. 135(C), pages 266-276.
    9. Cobb, Bryan R. & Sharp, Kendra V., 2013. "Impulse (Turgo and Pelton) turbine performance characteristics and their impact on pico-hydro installations," Renewable Energy, Elsevier, vol. 50(C), pages 959-964.
    10. Usmani, Sabah & Siddiqi, Afreen & Wescoat, James L., 2021. "Energy generation in the canal irrigation network in India: Integrated spatial planning framework on the Upper Ganga Canal corridor," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    11. Jawahar, C.P. & Michael, Prawin Angel, 2017. "A review on turbines for micro hydro power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 882-887.
    12. Tianyao Zhang & Diyi Chen & Jing Liu & Beibei Xu & Venkateshkumar M, 2020. "A Feasibility Analysis of Controlling a Hybrid Power System over Short Time Intervals," Energies, MDPI, vol. 13(21), pages 1-21, October.
    13. Payambarpour, S. Abdolkarim & Najafi, Amir F. & Magagnato, Franco, 2020. "Investigation of deflector geometry and turbine aspect ratio effect on 3D modified in-pipe hydro Savonius turbine: Parametric study," Renewable Energy, Elsevier, vol. 148(C), pages 44-59.
    14. Jelena Cvijović & Vladimir Obradović & Marija Todorović, 2021. "Stakeholder Management and Project Sustainability—A Throw of the Dice," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    15. Mohamad, Hasmaini & Mokhlis, Hazlie & Bakar, Ab Halim Abu & Ping, Hew Wooi, 2011. "A review on islanding operation and control for distribution network connected with small hydro power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3952-3962.
    16. Elbatran, A.H. & Yaakob, O.B. & Ahmed, Yasser M. & Shabara, H.M., 2015. "Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 40-50.
    17. Shuang Li & Yong Yang & Qing Xia, 2018. "Dynamic Safety Assessment in Nonlinear Hydropower Generation Systems," Complexity, Hindawi, vol. 2018, pages 1-8, April.
    18. Bicheng Guo & Jiang Guo, 2019. "Feedback Linearization and Reaching Law Based Sliding Mode Control Design for Nonlinear Hydraulic Turbine Governing System," Energies, MDPI, vol. 12(12), pages 1-19, June.
    19. Zhou, Daqing & Deng, Zhiqun (Daniel), 2017. "Ultra-low-head hydroelectric technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 23-30.
    20. Tapia, A. & R. del Nozal, A. & Reina, D.G. & Millán, P., 2021. "Three-dimensional optimization of penstock layouts for micro-hydropower plants using genetic algorithms," Applied Energy, Elsevier, vol. 301(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:201:y:2022:i:p2:p:87-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.