IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2132-d236975.html
   My bibliography  Save this article

Design and Analysis of Flexible Multi-Microgrid Interconnection Scheme for Mitigating Power Fluctuation and Optimizing Storage Capacity

Author

Listed:
  • Jianqiao Zhou

    (Department of Electrical Engineering, School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University, Shanghai 200240, China
    Key Laboratory of Control of Power Transmission and Conversion (SJTU), Ministry of Education, Shanghai 200240, China)

  • Jianwen Zhang

    (Department of Electrical Engineering, School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University, Shanghai 200240, China
    Key Laboratory of Control of Power Transmission and Conversion (SJTU), Ministry of Education, Shanghai 200240, China)

  • Xu Cai

    (Department of Electrical Engineering, School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University, Shanghai 200240, China
    Key Laboratory of Control of Power Transmission and Conversion (SJTU), Ministry of Education, Shanghai 200240, China)

  • Gang Shi

    (Department of Electrical Engineering, School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University, Shanghai 200240, China
    Key Laboratory of Control of Power Transmission and Conversion (SJTU), Ministry of Education, Shanghai 200240, China)

  • Jiacheng Wang

    (Mechatronic Systems Engineering, Simon Fraser University, Surrey, BC V3T 0A3, Canada)

  • Jiajie Zang

    (Mechatronic Systems Engineering, Simon Fraser University, Surrey, BC V3T 0A3, Canada)

Abstract

With the rapid increase of renewable energy integration, more serious power fluctuations are introduced in distribution systems. To mitigate power fluctuations caused by renewables, a microgrid with energy storage systems (ESSs) is an attractive solution. However, existing solutions are still not sufficiently cost-effective for compensating enormous power fluctuations considering the high unit cost of ESS. This paper proposes a new flexible multi-microgrid interconnection scheme to address this problem while optimizing the utilization of ESSs as well. The basic structure and functions of the proposed scheme are illustrated first. With the suitable power allocation method in place to realize fluctuation sharing among microgrids, the effectiveness of this scheme in power smoothing is analyzed mathematically. The corresponding power control strategies of multiple converters integrated into the DC common bus are designed, and the power fluctuation sharing could be achieved by all AC microgrids and DC-side ESS. In addition, a novel ESS sizing method which can deal with discrete data set is introduced. The proposed interconnection scheme is compared with a conventional independent microgrid scheme through real-world case studies. The results demonstrate the effectiveness of the interconnected microgrid scheme in mitigating power fluctuation and optimizing storage capacity, while at the expense of slightly increased capacity requirement for the AC/DC converters and construction cost for DC lines. According to the economic analysis, the proposed scheme is most suitable for areas where the distances between microgrids are short.

Suggested Citation

  • Jianqiao Zhou & Jianwen Zhang & Xu Cai & Gang Shi & Jiacheng Wang & Jiajie Zang, 2019. "Design and Analysis of Flexible Multi-Microgrid Interconnection Scheme for Mitigating Power Fluctuation and Optimizing Storage Capacity," Energies, MDPI, vol. 12(11), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2132-:d:236975
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2132/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2132/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Björn Nykvist & Måns Nilsson, 2015. "Rapidly falling costs of battery packs for electric vehicles," Nature Climate Change, Nature, vol. 5(4), pages 329-332, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bandeiras, F. & Pinheiro, E. & Gomes, M. & Coelho, P. & Fernandes, J., 2020. "Review of the cooperation and operation of microgrid clusters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Hong-Chao Gao & Joon-Ho Choi & Sang-Yun Yun & Seon-Ju Ahn, 2020. "A New Power Sharing Scheme of Multiple Microgrids and an Iterative Pairing-Based Scheduling Method," Energies, MDPI, vol. 13(7), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ettore Bompard & Daniele Grosso & Tao Huang & Francesco Profumo & Xianzhang Lei & Duo Li, 2018. "World Decarbonization through Global Electricity Interconnections," Energies, MDPI, vol. 11(7), pages 1-29, July.
    2. Huang, Qisheng & Xu, Yunjian & Courcoubetis, Costas, 2020. "Stackelberg competition between merchant and regulated storage investment in wholesale electricity markets," Applied Energy, Elsevier, vol. 264(C).
    3. Gnann, Till & Stephens, Thomas S. & Lin, Zhenhong & Plötz, Patrick & Liu, Changzheng & Brokate, Jens, 2018. "What drives the market for plug-in electric vehicles? - A review of international PEV market diffusion models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 158-164.
    4. Carsten Helm & Mathias Mier, 2020. "Steering the Energy Transition in a World of Intermittent Electricity Supply: Optimal Subsidies and Taxes for Renewables Storage," ifo Working Paper Series 330, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    5. Yashraj Tripathy & Andrew McGordon & Anup Barai, 2020. "Improving Accessible Capacity Tracking at Low Ambient Temperatures for Range Estimation of Battery Electric Vehicles," Energies, MDPI, vol. 13(8), pages 1-18, April.
    6. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.
    7. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
    8. Biswas, D.B. & Bose, S. & Dalvi, V.H. & Deshmukh, S.P. & Shenoy, N.V. & Panse, S.V. & Joshi, J.B., 2020. "A techno-economic comparison between piston steam engines as dispatchable power generation systems for renewable energy with concentrated solar harvesting and thermal storage against solar photovoltai," Energy, Elsevier, vol. 213(C).
    9. Ivan Mareev & Dirk Uwe Sauer, 2018. "Energy Consumption and Life Cycle Costs of Overhead Catenary Heavy-Duty Trucks for Long-Haul Transportation," Energies, MDPI, vol. 11(12), pages 1-18, December.
    10. Yazdanie, Mashael & Densing, Martin & Wokaun, Alexander, 2017. "Cost optimal urban energy systems planning in the context of national energy policies: A case study for the city of Basel," Energy Policy, Elsevier, vol. 110(C), pages 176-190.
    11. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    12. Sturm, J. & Ennifar, H. & Erhard, S.V. & Rheinfeld, A. & Kosch, S. & Jossen, A., 2018. "State estimation of lithium-ion cells using a physicochemical model based extended Kalman filter," Applied Energy, Elsevier, vol. 223(C), pages 103-123.
    13. Johannes Karlsson & Anders Grauers, 2023. "Agent-Based Investigation of Charger Queues and Utilization of Public Chargers for Electric Long-Haul Trucks," Energies, MDPI, vol. 16(12), pages 1-25, June.
    14. Petit, Martin & Prada, Eric & Sauvant-Moynot, Valérie, 2016. "Development of an empirical aging model for Li-ion batteries and application to assess the impact of Vehicle-to-Grid strategies on battery lifetime," Applied Energy, Elsevier, vol. 172(C), pages 398-407.
    15. Shafiei, Ehsan & Davidsdottir, Brynhildur & Stefansson, Hlynur & Asgeirsson, Eyjolfur Ingi & Fazeli, Reza & Gestsson, Marías Halldór & Leaver, Jonathan, 2019. "Simulation-based appraisal of tax-induced electro-mobility promotion in Iceland and prospects for energy-economic development," Energy Policy, Elsevier, vol. 133(C).
    16. Schauf, Magnus & Schwenen, Sebastian, 2023. "System price dynamics for battery storage," Energy Policy, Elsevier, vol. 183(C).
    17. Lefeng, Shi & Shengnan, Lv & Chunxiu, Liu & Yue, Zhou & Cipcigan, Liana & Acker, Thomas L., 2020. "A framework for electric vehicle power supply chain development," Utilities Policy, Elsevier, vol. 64(C).
    18. Hsieh, I-Yun Lisa & Pan, Menghsuan Sam & Chiang, Yet-Ming & Green, William H., 2019. "Learning only buys you so much: Practical limits on battery price reduction," Applied Energy, Elsevier, vol. 239(C), pages 218-224.
    19. Li, Yan & Feng, Tian-tian & Liu, Li-li & Zhang, Meng-xi, 2023. "How do the electricity market and carbon market interact and achieve integrated development?--A bibliometric-based review," Energy, Elsevier, vol. 265(C).
    20. Jochem, Patrick & Doll, Claus & Fichtner, Wolf, 2016. "External costs of electric vehicles," MPRA Paper 91602, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2132-:d:236975. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.