IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2018i1p43-d192952.html
   My bibliography  Save this article

Online Recognition Method for Voltage Sags Based on a Deep Belief Network

Author

Listed:
  • Fei Mei

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China
    Jiangsu Key Laboratory of Smart Grid Technology and Equipment, Southeast University, Nanjing 210096, China)

  • Yong Ren

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China)

  • Qingliang Wu

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China)

  • Chenyu Zhang

    (State Grid Jiangsu Electric Power Co., Ltd. Research Institute, Nanjing 211113, China)

  • Yi Pan

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Haoyuan Sha

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Jianyong Zheng

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

Abstract

Voltage sag is a serious power quality phenomenon that threatens industrial manufacturing and residential electricity. A large-scale monitoring system has been established and continually improved to detect and record voltage sag events. However, the inefficient process of data sampling cannot provide valuable information early enough for governance of the system. Therefore, a novel online recognition method for voltage sags is proposed. The main contributions of this paper include: 1) The causes and waveform characters of voltage sags were analyzed; 2) according to the characters of different sag waveforms, 10 voltage sag characteristic parameters were proposed and proven to be effective; 3) a deep belief network (DBN) model was built using these parameters to complete automatic recognition of the sag event types. Experiments were conducted using voltage sag data from one month recorded by the 10 kV monitoring points in Suqian, Jiangsu Province, China. The results showed good performance of the proposed method: Recognition accuracy was 96.92%. The test results from the proposed method were compared to the results from support vector machine (SVM) recognition methods. The proposed method was shown to outperform SVM.

Suggested Citation

  • Fei Mei & Yong Ren & Qingliang Wu & Chenyu Zhang & Yi Pan & Haoyuan Sha & Jianyong Zheng, 2018. "Online Recognition Method for Voltage Sags Based on a Deep Belief Network," Energies, MDPI, vol. 12(1), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:43-:d:192952
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/1/43/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/1/43/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elbasuony, Ghada S. & Abdel Aleem, Shady H.E. & Ibrahim, Ahmed M. & Sharaf, Adel M., 2018. "A unified index for power quality evaluation in distributed generation systems," Energy, Elsevier, vol. 149(C), pages 607-622.
    2. Guo, Yabin & Tan, Zehan & Chen, Huanxin & Li, Guannan & Wang, Jiangyu & Huang, Ronggeng & Liu, Jiangyan & Ahmad, Tanveer, 2018. "Deep learning-based fault diagnosis of variable refrigerant flow air-conditioning system for building energy saving," Applied Energy, Elsevier, vol. 225(C), pages 732-745.
    3. Horia Gheorghe Beleiu & Ioana Natalia Beleiu & Sorin Gheorghe Pavel & Cosmin Pompei Darab, 2018. "Management of Power Quality Issues from an Economic Point of View," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
    4. Jun Lin & Lei Su & Yingjie Yan & Gehao Sheng & Da Xie & Xiuchen Jiang, 2018. "Prediction Method for Power Transformer Running State Based on LSTM_DBN Network," Energies, MDPI, vol. 11(7), pages 1-14, July.
    5. Rafael Cisneros-Magaña & Aurelio Medina & Olimpo Anaya-Lara, 2018. "Time-Domain Voltage Sag State Estimation Based on the Unscented Kalman Filter for Power Systems with Nonlinear Components," Energies, MDPI, vol. 11(6), pages 1-20, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Indu Sekhar Samanta & Subhasis Panda & Pravat Kumar Rout & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "A Comprehensive Review of Deep-Learning Applications to Power Quality Analysis," Energies, MDPI, vol. 16(11), pages 1-31, May.
    2. Alexandre Serrano-Fontova & Pablo Casals Torrens & Ricard Bosch, 2019. "Power Quality Disturbances Assessment during Unintentional Islanding Scenarios. A Contribution to Voltage Sag Studies," Energies, MDPI, vol. 12(16), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    2. Dawid Buła & Jarosław Michalak & Marcin Zygmanowski & Tomasz Adrikowski & Grzegorz Jarek & Michał Jeleń, 2021. "Control Strategy of 1 kV Hybrid Active Power Filter for Mining Applications," Energies, MDPI, vol. 14(16), pages 1-25, August.
    3. Rosalia Sinvula & Khaled Mohamed Abo-Al-Ez & Mohamed Tariq Kahn, 2020. "A Proposed Harmonic Monitoring System for Large Power Users Considering Harmonic Limits," Energies, MDPI, vol. 13(17), pages 1-18, September.
    4. Rongjiang Ma & Shen Yang & Xianlin Wang & Xi-Cheng Wang & Ming Shan & Nanyang Yu & Xudong Yang, 2020. "Systematic Method for the Energy-Saving Potential Calculation of Air-Conditioning Systems via Data Mining. Part I: Methodology," Energies, MDPI, vol. 14(1), pages 1-15, December.
    5. Shen, Boyang & Chen, Yu & Li, Chuanyue & Wang, Sheng & Chen, Xiaoyuan, 2021. "Superconducting fault current limiter (SFCL): Experiment and the simulation from finite-element method (FEM) to power/energy system software," Energy, Elsevier, vol. 234(C).
    6. Shariq, M. Hasan & Hughes, Ben Richard, 2020. "Revolutionising building inspection techniques to meet large-scale energy demands: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    7. Ahmad, Tanveer & Chen, Huanxin, 2019. "Deep learning for multi-scale smart energy forecasting," Energy, Elsevier, vol. 175(C), pages 98-112.
    8. Kai Ding & Chen Yao & Yifan Li & Qinglong Hao & Yaqiong Lv & Zengrui Huang, 2022. "A Review on Fault Diagnosis Technology of Key Components in Cold Ironing System," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    9. Gerber, Daniel L. & Ghatpande, Omkar A. & Nazir, Moazzam & Heredia, Willy G. Bernal & Feng, Wei & Brown, Richard E., 2022. "Energy and power quality measurement for electrical distribution in AC and DC microgrid buildings," Applied Energy, Elsevier, vol. 308(C).
    10. Bielecki, Sławomir & Skoczkowski, Tadeusz, 2018. "An enhanced concept of Q-power management," Energy, Elsevier, vol. 162(C), pages 335-353.
    11. Hong Pan & Chenyang Hang & Fang Feng & Yuan Zheng & Fang Li, 2022. "Improved Neural Network Algorithm Based Flow Characteristic Curve Fitting for Hydraulic Turbines," Sustainability, MDPI, vol. 14(17), pages 1-15, August.
    12. Yang, Shuxia & Wang, Xiongfei & Xu, Jiayu & Tang, Mingrun & Chen, Guang, 2023. "Distribution network adaptability assessment considering distributed PV “reverse power flow” behavior - a case study in Beijing," Energy, Elsevier, vol. 275(C).
    13. Eom, Yong Hwan & Yoo, Jin Woo & Hong, Sung Bin & Kim, Min Soo, 2019. "Refrigerant charge fault detection method of air source heat pump system using convolutional neural network for energy saving," Energy, Elsevier, vol. 187(C).
    14. Ventosa-Cutillas, Antonio & Montero-Robina, Pablo & Cuesta, Federico & Gordillo, Francisco, 2020. "A simple modulation approach for interfacing three-level Neutral-Point-Clamped converters to the grid," Energy, Elsevier, vol. 205(C).
    15. Alexandre Serrano-Fontova & Pablo Casals Torrens & Ricard Bosch, 2019. "Power Quality Disturbances Assessment during Unintentional Islanding Scenarios. A Contribution to Voltage Sag Studies," Energies, MDPI, vol. 12(16), pages 1-21, August.
    16. Tien, Paige Wenbin & Wei, Shuangyu & Liu, Tianshu & Calautit, John & Darkwa, Jo & Wood, Christopher, 2021. "A deep learning approach towards the detection and recognition of opening of windows for effective management of building ventilation heat losses and reducing space heating demand," Renewable Energy, Elsevier, vol. 177(C), pages 603-625.
    17. Wang, Jingfan & Tchapmi, Lyne P. & Ravikumar, Arvind P. & McGuire, Mike & Bell, Clay S. & Zimmerle, Daniel & Savarese, Silvio & Brandt, Adam R., 2020. "Machine vision for natural gas methane emissions detection using an infrared camera," Applied Energy, Elsevier, vol. 257(C).
    18. Barbie, Eli & Rabinovici, Raul & Kuperman, Alon, 2021. "Analytical formulation and optimization of Weighted Total Harmonic Distortion in three-phase staircase modulated multilevel inverters," Energy, Elsevier, vol. 215(PA).
    19. Li, Tingting & Zhou, Yangze & Zhao, Yang & Zhang, Chaobo & Zhang, Xuejun, 2022. "A hierarchical object oriented Bayesian network-based fault diagnosis method for building energy systems," Applied Energy, Elsevier, vol. 306(PB).
    20. Du, Zhimin & Liang, Xinbin & Chen, Siliang & Zhu, Xu & Chen, Kang & Jin, Xinqiao, 2023. "Knowledge-infused deep learning diagnosis model with self-assessment for smart management in HVAC systems," Energy, Elsevier, vol. 263(PD).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:43-:d:192952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.