IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i9p2424-d169548.html
   My bibliography  Save this article

A Stochastic Approach to Energy Policy and Management: A Case Study of the Pakistan Energy Crisis

Author

Listed:
  • Zaman Sajid

    (Department of Process Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, NL A1B 3X5, Canada)

  • Asma Javaid

    (Department of Computer Science, Memorial University of Newfoundland, St. John’s, NL A1B 3X5, Canada)

Abstract

The energy policy of a country dictates its ability to better manage and deal with an energy crisis. A sustainable energy policy deals with not only energy production but also with energy consumption. In the past, the government of Pakistan has lacked such an approach. This study aims to develop a policy-making framework to improve the energy management of Pakistan through a probabilistic approach. Stochastic analysis is performed in this study and the uncertainty in energy data is used to propose a holistic energy policy. Energy-utilization data from 17 different sources are used to compare the accuracy of energy-consumption data from 1989 to 2013. The analysis reveals that there exists an uncertainty in energy-consumption data and the major cause of this uncertainty is energy theft. The analysis shows that the industry has the highest uncertainty in its energy-data utilization, followed by the transport and the domestic sectors of Pakistan. Based on stochastic analysis, seven recommended energy-policy guidelines are presented to manage the energy crisis in the country. The analysis proposes that Pakistan needs to take measures to control energy theft.

Suggested Citation

  • Zaman Sajid & Asma Javaid, 2018. "A Stochastic Approach to Energy Policy and Management: A Case Study of the Pakistan Energy Crisis," Energies, MDPI, vol. 11(9), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2424-:d:169548
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/9/2424/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/9/2424/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lin, Boqiang & Ahmad, Izhar, 2016. "Energy substitution effect on transport sector of Pakistan based on trans-log production function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1182-1193.
    2. Jamil, Faisal & Ahmad, Eatzaz, 2010. "The relationship between electricity consumption, electricity prices and GDP in Pakistan," Energy Policy, Elsevier, vol. 38(10), pages 6016-6025, October.
    3. Robus, Charles L.L. & Gottumukkala, Lalitha Devi & van Rensburg, Eugéne & Görgens, Johann F., 2016. "Feasible process development and techno-economic evaluation of paper sludge to bioethanol conversion: South African paper mills scenario," Renewable Energy, Elsevier, vol. 92(C), pages 333-345.
    4. Sheikh, Munawar A., 2010. "Energy and renewable energy scenario of Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 354-363, January.
    5. Azam Chaudhry, 2010. "A Panel Data Analysis of Electricity Demand in Pakistan," Lahore Journal of Economics, Department of Economics, The Lahore School of Economics, vol. 15(Special E), pages 75-106, September.
    6. Mahmud, Syed F., 2000. "The energy demand in the manufacturing sector of Pakistan: some further results," Energy Economics, Elsevier, vol. 22(6), pages 641-648, December.
    7. Sajid, Zaman & Khan, Faisal & Zhang, Yan, 2017. "Integration of interpretive structural modelling with Bayesian network for biodiesel performance analysis," Renewable Energy, Elsevier, vol. 107(C), pages 194-203.
    8. Nasir, Muhammad & Ur Rehman, Faiz, 2011. "Environmental Kuznets Curve for carbon emissions in Pakistan: An empirical investigation," Energy Policy, Elsevier, vol. 39(3), pages 1857-1864, March.
    9. Sajid, Zaman & Khan, Faisal & Zhang, Yan, 2018. "A novel process economics risk model applied to biodiesel production system," Renewable Energy, Elsevier, vol. 118(C), pages 615-626.
    10. Sajid, Zaman & Khan, Faisal & Zhang, Yan, 2016. "Process simulation and life cycle analysis of biodiesel production," Renewable Energy, Elsevier, vol. 85(C), pages 945-952.
    11. Smith, Thomas B., 2004. "Electricity theft: a comparative analysis," Energy Policy, Elsevier, vol. 32(18), pages 2067-2076, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Savian, Fernando de Souza & Siluk, Julio Cezar Mairesse & Garlet, Taís Bisognin & do Nascimento, Felipe Moraes & Pinheiro, José Renes & Vale, Zita, 2021. "Non-technical losses: A systematic contemporary article review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    2. Isabel Andrade & Johann Land & Patricio Gallardo & Susan Krumdieck, 2022. "Application of the InTIME Methodology for the Transition of Office Buildings to Low Carbon—A Case Study," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
    3. Zaman Sajid & Maria Aparecida Batista da Silva & Syed Nasir Danial, 2021. "Historical Analysis of the Role of Governance Systems in the Sustainable Development of Biofuels in Brazil and the United States of America (USA)," Sustainability, MDPI, vol. 13(12), pages 1-24, June.
    4. Radu Lupu & Adrian Cantemir Călin & Cristina Georgiana Zeldea & Iulia Lupu, 2021. "Systemic Risk Spillovers in the European Energy Sector," Energies, MDPI, vol. 14(19), pages 1-23, October.
    5. Zaman Sajid & Asma Javaid & Muhammad Kashif Khan & Hamad Sadiq & Usman Hamid, 2021. "Integration of Regression Analysis and Monte Carlo Simulation for Probabilistic Energy Policy Guidelines in Pakistan," Resources, MDPI, vol. 10(9), pages 1-26, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zaman Sajid & Nicholas Lynch, 2018. "Financial Modelling Strategies for Social Life Cycle Assessment: A Project Appraisal of Biodiesel Production and Sustainability in Newfoundland and Labrador, Canada," Sustainability, MDPI, vol. 10(9), pages 1-19, September.
    2. Sana Bashir & Iftikhar Ahmad & Sajid Rashid Ahmad, 2018. "Low-Emission Modeling for Energy Demand in the Household Sector: A Study of Pakistan as a Developing Economy," Sustainability, MDPI, vol. 10(11), pages 1-17, October.
    3. Sajid, Zaman, 2021. "A dynamic risk assessment model to assess the impact of the coronavirus (COVID-19) on the sustainability of the biomass supply chain: A case study of a U.S. biofuel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Zaman Sajid & Maria Aparecida Batista da Silva & Syed Nasir Danial, 2021. "Historical Analysis of the Role of Governance Systems in the Sustainable Development of Biofuels in Brazil and the United States of America (USA)," Sustainability, MDPI, vol. 13(12), pages 1-24, June.
    5. Hayat, Farah & Pirzada, Muhammad Daniel Saeed & Khan, Abid Ali, 2018. "The validation of Granger causality through formulation and use of finance-growth-energy indexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1859-1867.
    6. Ejaz Gul & Imran Sharif Chaudhry, 2016. "Socio-Economic Analysis of Household Energy Security: Evidence from 3D Energy Losses Surface Maps (ELSMs)of a Town Using Conjuncture of Factors Matrix, Digital and Mathematical Analysis," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 55(4), pages 1019-1041.
    7. Jamil, Faisal, 2013. "On the electricity shortage, price and electricity theft nexus," Energy Policy, Elsevier, vol. 54(C), pages 267-272.
    8. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    9. Shahbaz, Muhammad & Lean, Hooi Hooi, 2012. "The dynamics of electricity consumption and economic growth: A revisit study of their causality in Pakistan," Energy, Elsevier, vol. 39(1), pages 146-153.
    10. Zhao, Zhen-Yu & Chen, Yu-Long & Li, Heng, 2019. "What affects the development of renewable energy power generation projects in China: ISM analysis," Renewable Energy, Elsevier, vol. 131(C), pages 506-517.
    11. Saboori, Behnaz & Sulaiman, Jamalludin, 2013. "Environmental degradation, economic growth and energy consumption: Evidence of the environmental Kuznets curve in Malaysia," Energy Policy, Elsevier, vol. 60(C), pages 892-905.
    12. Khan, Rana Asad Javid & Thaheem, Muhammad Jamaluddin & Ali, Tauha Hussain, 2020. "Are Pakistani homebuyers ready to adopt sustainable housing? An insight into their willingness to pay," Energy Policy, Elsevier, vol. 143(C).
    13. Shakeel, Shah Rukh & Takala, Josu & Shakeel, Waqas, 2016. "Renewable energy sources in power generation in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 421-434.
    14. Mubashir Qasim & Koji Kotani, 2014. "An empirical analysis of energy shortage in Pakistan," Asia-Pacific Development Journal, United Nations Economic and Social Commission for Asia and the Pacific (ESCAP), vol. 21(1), pages 137-166, June.
    15. Qudrat-Ullah, Hassan, 2015. "Independent power (or pollution) producers? Electricity reforms and IPPs in Pakistan," Energy, Elsevier, vol. 83(C), pages 240-251.
    16. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    17. Noel Alter & Shabib Haider Syed, 2011. "An Empirical Analysis of Electricity Demand in Pakistan," International Journal of Energy Economics and Policy, Econjournals, vol. 1(4), pages 116-139.
    18. Danish & Bin Zhang & Zhaohua Wang & Bo Wang, 2018. "Energy production, economic growth and CO2 emission: evidence from Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(1), pages 27-50, January.
    19. Sajid, Zaman & Khan, Faisal & Zhang, Yan, 2018. "A novel process economics risk model applied to biodiesel production system," Renewable Energy, Elsevier, vol. 118(C), pages 615-626.
    20. Valasai, Gordhan Das & Uqaili, Muhammad Aslam & Memon, HafeezUr Rahman & Samoo, Saleem Raza & Mirjat, Nayyar Hussain & Harijan, Khanji, 2017. "Overcoming electricity crisis in Pakistan: A review of sustainable electricity options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 734-745.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2424-:d:169548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.