IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v85y2016icp945-952.html
   My bibliography  Save this article

Process simulation and life cycle analysis of biodiesel production

Author

Listed:
  • Sajid, Zaman
  • Khan, Faisal
  • Zhang, Yan

Abstract

Biodiesel is a renewable and sustainable biofuel. There are various production processes to produce biodiesel from different kinds of raw materials. In this study, the environmental impacts of biodiesel production from non-edible Jatropha oil and waste cooking oil (WCO) were investigated and compared using systematic life cycle assessment. The results show that crops growing and cultivation of non-edible Jatropha curcas lead to higher environmental impacts compared to WCO process. However, biodiesel production process from Jatropha oil has better performance because the WCO process needs to consume variety of chemicals and requires a large amount of energy for the pretreatment of raw WCO and further chemical conversion to biodiesel. Results also indicate that the collection mechanism of WCO has significant contributions towards environmental impacts. In general, biodiesel production from Jatropha oil shows higher impacts for damage categories of climate change, human health and ecosystem quality whereas biodiesel production from WCO has more severe environmental impacts for resource category. The total environmental impact is 74% less in case of using WCO as raw material compared to non-edible Jatropha oil.

Suggested Citation

  • Sajid, Zaman & Khan, Faisal & Zhang, Yan, 2016. "Process simulation and life cycle analysis of biodiesel production," Renewable Energy, Elsevier, vol. 85(C), pages 945-952.
  • Handle: RePEc:eee:renene:v:85:y:2016:i:c:p:945-952
    DOI: 10.1016/j.renene.2015.07.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115301415
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.07.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Omer, Abdeen Mustafa, 2008. "Energy, environment and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2265-2300, December.
    2. Atabani, A.E. & Silitonga, A.S. & Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Fayaz, H., 2013. "Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 211-245.
    3. Bharathiraja, B. & Chakravarthy, M. & Kumar, R. Ranjith & Yuvaraj, D. & Jayamuthunagai, J. & Kumar, R. Praveen & Palani, S., 2014. "Biodiesel production using chemical and biological methods – A review of process, catalyst, acyl acceptor, source and process variables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 368-382.
    4. Dufour, Javier & Iribarren, Diego, 2012. "Life cycle assessment of biodiesel production from free fatty acid-rich wastes," Renewable Energy, Elsevier, vol. 38(1), pages 155-162.
    5. Omer, Abdeen Mustafa, 2008. "Green energies and the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 1789-1821, September.
    6. Singhabhandhu, Ampaitepin & Tezuka, Tetsuo, 2010. "Prospective framework for collection and exploitation of waste cooking oil as feedstock for energy conversion," Energy, Elsevier, vol. 35(4), pages 1839-1847.
    7. Borugadda, Venu Babu & Goud, Vaibhav V., 2012. "Biodiesel production from renewable feedstocks: Status and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4763-4784.
    8. Banković-Ilić, Ivana B. & Stamenković, Olivera S. & Veljković, Vlada B., 2012. "Biodiesel production from non-edible plant oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3621-3647.
    9. Hou, Jian & Zhang, Peidong & Yuan, Xianzheng & Zheng, Yonghong, 2011. "Life cycle assessment of biodiesel from soybean, jatropha and microalgae in China conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5081-5091.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    2. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    3. Rajaeifar, Mohammad Ali & Akram, Asadolah & Ghobadian, Barat & Rafiee, Shahin & Heijungs, Reinout & Tabatabaei, Meisam, 2016. "Environmental impact assessment of olive pomace oil biodiesel production and consumption: A comparative lifecycle assessment," Energy, Elsevier, vol. 106(C), pages 87-102.
    4. Silitonga, A.S. & Masjuki, H.H. & Mahlia, T.M.I. & Ong, H.C. & Chong, W.T. & Boosroh, M.H., 2013. "Overview properties of biodiesel diesel blends from edible and non-edible feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 346-360.
    5. Chakraborty, Rajat & Gupta, Abhishek.K. & Chowdhury, Ratul, 2014. "Conversion of slaughterhouse and poultry farm animal fats and wastes to biodiesel: Parametric sensitivity and fuel quality assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 120-134.
    6. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    7. Bharathiraja, B. & Chakravarthy, M. & Ranjith Kumar, R. & Yogendran, D. & Yuvaraj, D. & Jayamuthunagai, J. & Praveen Kumar, R. & Palani, S., 2015. "Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 634-653.
    8. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    9. Tolón-Becerra, A. & Lastra-Bravo, X. & Bienvenido-Bárcena, F., 2011. "Proposal for territorial distribution of the EU 2020 political renewable energy goal," Renewable Energy, Elsevier, vol. 36(8), pages 2067-2077.
    10. Mahlia, T.M.I. & Tohno, S. & Tezuka, T., 2012. "A review on fuel economy test procedure for automobiles: Implementation possibilities in Malaysia and lessons for other countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4029-4046.
    11. di Bitonto, Luigi & Pastore, Carlo, 2019. "Metal hydrated-salts as efficient and reusable catalysts for pre-treating waste cooking oils and animal fats for an effective production of biodiesel," Renewable Energy, Elsevier, vol. 143(C), pages 1193-1200.
    12. Chamkalani, A. & Zendehboudi, S. & Rezaei, N. & Hawboldt, K., 2020. "A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Karmee, Sanjib Kumar, 2016. "Liquid biofuels from food waste: Current trends, prospect and limitation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 945-953.
    14. Hou, Jian & Zhang, Peidong & Yuan, Xianzheng & Zheng, Yonghong, 2011. "Life cycle assessment of biodiesel from soybean, jatropha and microalgae in China conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5081-5091.
    15. Dodic, Sinisa N. & Popov, Stevan D. & Dodic, Jelena M. & Rankovic, Jovana A. & Zavargo, Zoltan Z., 2009. "Potential contribution of bioethanol fuel to the transport sector of Vojvodina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2197-2200, October.
    16. Sanjid, A. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Abedin, M.J. & Palash, S.M., 2013. "Impact of palm, mustard, waste cooking oil and Calophyllum inophyllum biofuels on performance and emission of CI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 664-682.
    17. Makky, Ahmed Al & Alaswad, A & Gibson, Desmond & Olabi, A.G, 2017. "Renewable energy scenario and environmental aspects of soil emission measurements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1157-1173.
    18. Costa, A.O. & Oliveira, L.B. & Lins, M.P.E. & Silva, A.C.M. & Araujo, M.S.M. & Pereira Jr., A.O. & Rosa, L.P., 2013. "Sustainability analysis of biodiesel production: A review on different resources in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 407-412.
    19. Tirkey, Jeewan Vachan & Kumar, Ajeet & Singh, Deepak Kumar, 2022. "Energy consumption, greenhouse gas emissions and economic feasibility studies of biodiesel production from Mahua (Madhuca longifolia) in India," Energy, Elsevier, vol. 249(C).
    20. Rajaeifar, Mohammad Ali & Abdi, Reza & Tabatabaei, Meisam, 2017. "Expanded polystyrene waste application for improving biodiesel environmental performance parameters from life cycle assessment point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 278-298.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:85:y:2016:i:c:p:945-952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.