IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p2106-d163534.html
   My bibliography  Save this article

Sequence Planning for Selective Disassembly Aiming at Reducing Energy Consumption Using a Constraints Relation Graph and Improved Ant Colony Optimization Algorithm

Author

Listed:
  • Bingtao Hu

    (State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China)

  • Yixiong Feng

    (State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China)

  • Hao Zheng

    (State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China)

  • Jianrong Tan

    (State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China)

Abstract

With environmental pollution and the shortage of resources becoming increasingly serious, the disassembly of certain component in mechanical products for reuse and recycling has received more attention. However, how to model a complex mechanical product accurately and simply, and minimize the number of components involved in the disassembly process remain unsolved problems. The identification of subassembly can reduce energy consumption, but the process is recursive and may change the number of components to be disassembled. In this paper, a method aiming at reducing the energy consumption based on the constraints relation graph (CRG) and the improved ant colony optimization algorithm (IACO) is proposed to find the optimal disassembly sequence. Using the CRG, the subassembly is identified and the number of components that need to be disassembled is minimized. Subsequently, the optimal disassembly sequence can be planned using IACO where a new pheromone factor is proposed to improve the convergence performance of the ant colony algorithm. Furthermore, a case study is presented to illustrate the effectiveness of the proposed method.

Suggested Citation

  • Bingtao Hu & Yixiong Feng & Hao Zheng & Jianrong Tan, 2018. "Sequence Planning for Selective Disassembly Aiming at Reducing Energy Consumption Using a Constraints Relation Graph and Improved Ant Colony Optimization Algorithm," Energies, MDPI, vol. 11(8), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2106-:d:163534
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/2106/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/2106/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yicong Gao & Qirui Wang & Yixiong Feng & Hao Zheng & Bing Zheng & Jianrong Tan, 2018. "An Energy-Saving Optimization Method of Dynamic Scheduling for Disassembly Line," Energies, MDPI, vol. 11(5), pages 1-18, May.
    2. Gao, Yicong & Feng, Yixiong & Zhang, Zixian & Tan, Jianrong, 2015. "An optimal dynamic interval preventive maintenance scheduling for series systems," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 19-30.
    3. McGovern, Seamus M. & Gupta, Surendra M., 2007. "A balancing method and genetic algorithm for disassembly line balancing," European Journal of Operational Research, Elsevier, vol. 179(3), pages 692-708, June.
    4. Felipe Cerdas & Paul Titscher & Nicolas Bognar & Richard Schmuch & Martin Winter & Arno Kwade & Christoph Herrmann, 2018. "Exploring the Effect of Increased Energy Density on the Environmental Impacts of Traction Batteries: A Comparison of Energy Optimized Lithium-Ion and Lithium-Sulfur Batteries for Mobility Applications," Energies, MDPI, vol. 11(1), pages 1-20, January.
    5. Yi Wu & Saurabh Saxena & Yinjiao Xing & Youren Wang & Chuan Li & Winco K. C. Yung & Michael Pecht, 2018. "Analysis of Manufacturing-Induced Defects and Structural Deformations in Lithium-Ion Batteries Using Computed Tomography," Energies, MDPI, vol. 11(4), pages 1-22, April.
    6. Tian, Guangdong & Zhang, Honghao & Feng, Yixiong & Wang, Danqi & Peng, Yong & Jia, Hongfei, 2018. "Green decoration materials selection under interior environment characteristics: A grey-correlation based hybrid MCDM method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 682-692.
    7. Gabrielle Gaustad & Elsa Olivetti & Randolph Kirchain, 2010. "Design for Recycling: Evaluation and Efficient Alloy Modification," Journal of Industrial Ecology, Yale University, vol. 14(2), pages 286-308, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuhui Xia & Wei Liu & Zelin Zhang & Lei Wang & Jianhua Cao & Xiang Liu, 2019. "A Balancing Method of Mixed-model Disassembly Line in Random Working Environment," Sustainability, MDPI, vol. 11(8), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuhui Xia & Wei Liu & Zelin Zhang & Lei Wang & Jianhua Cao & Xiang Liu, 2019. "A Balancing Method of Mixed-model Disassembly Line in Random Working Environment," Sustainability, MDPI, vol. 11(8), pages 1-16, April.
    2. Fang, Yilin & Liu, Quan & Li, Miqing & Laili, Yuanjun & Pham, Duc Truong, 2019. "Evolutionary many-objective optimization for mixed-model disassembly line balancing with multi-robotic workstations," European Journal of Operational Research, Elsevier, vol. 276(1), pages 160-174.
    3. Lixia Zhu & Zeqiang Zhang & Yi Wang & Ning Cai, 2020. "On the end-of-life state oriented multi-objective disassembly line balancing problem," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1403-1428, August.
    4. Wei Meng & Xiufen Zhang, 2020. "Optimization of Remanufacturing Disassembly Line Balance Considering Multiple Failures and Material Hazards," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    5. Özceylan, Eren & Paksoy, Turan & Bektaş, Tolga, 2014. "Modeling and optimizing the integrated problem of closed-loop supply chain network design and disassembly line balancing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 142-164.
    6. Abdollahifar, M. & Molaiyan, P. & Lassi, U. & Wu, N.L. & Kwade, A., 2022. "Multifunctional behaviour of graphite in lithium–sulfur batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    7. Battaïa, Olga & Dolgui, Alexandre, 2013. "A taxonomy of line balancing problems and their solutionapproaches," International Journal of Production Economics, Elsevier, vol. 142(2), pages 259-277.
    8. Seyit Ali Erdogan & Jonas Šaparauskas & Zenonas Turskis, 2019. "A Multi-Criteria Decision-Making Model to Choose the Best Option for Sustainable Construction Management," Sustainability, MDPI, vol. 11(8), pages 1-19, April.
    9. Ondemir, Onder & Gupta, Surendra M., 2014. "A multi-criteria decision making model for advanced repair-to-order and disassembly-to-order system," European Journal of Operational Research, Elsevier, vol. 233(2), pages 408-419.
    10. Thomas F. Landinger & Guenter Schwarzberger & Guenter Hofer & Matthias Rose & Andreas Jossen, 2021. "Power Line Communications for Automotive High Voltage Battery Systems: Channel Modeling and Coexistence Study with Battery Monitoring," Energies, MDPI, vol. 14(7), pages 1-26, March.
    11. Lin, Boliang & Zhao, Yinan, 2021. "Synchronized optimization of EMU train assignment and second-level preventive maintenance scheduling," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    12. Xiaofeng Wang & Shu Guo & Jian Shen & Yang Liu, 2020. "Optimization of preventive maintenance for series manufacturing system by differential evolution algorithm," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 745-757, March.
    13. Radim Briš & Nuong Thi Thuy Tran, 2023. "Discrete Model for a Multi-Objective Maintenance Optimization Problem of Safety Systems," Mathematics, MDPI, vol. 11(2), pages 1-18, January.
    14. Zhang, Guangxu & Wei, Xuezhe & Tang, Xuan & Zhu, Jiangong & Chen, Siqi & Dai, Haifeng, 2021. "Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    15. Shujin Qin & Xinkai Xie & Jiacun Wang & Xiwang Guo & Liang Qi & Weibiao Cai & Ying Tang & Qurra Tul Ann Talukder, 2024. "An Optimized Advantage Actor-Critic Algorithm for Disassembly Line Balancing Problem Considering Disassembly Tool Degradation," Mathematics, MDPI, vol. 12(6), pages 1-19, March.
    16. Feng, Jianghong & Xu, Su Xiu & Xu, Gangyan & Cheng, Huibing, 2022. "An integrated decision-making method for locating parking centers of recyclable waste transportation vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    17. Kezia Amanda Kurniadi & Kwangyeol Ryu, 2021. "Development of Multi-Disciplinary Green-BOM to Maintain Sustainability in Reconfigurable Manufacturing Systems," Sustainability, MDPI, vol. 13(17), pages 1-19, August.
    18. Li, Tao & Li, Ang & Guo, Xiaopeng, 2020. "The sustainable development-oriented development and utilization of renewable energy industry——A comprehensive analysis of MCDM methods," Energy, Elsevier, vol. 212(C).
    19. Xiong Xiaoqin & Cheng Aiguo, 2020. "Evaluation of Heavy Commercial Vehicles Brand Considering Multi-Attribute Indexes in China," Journal of Systems Science and Information, De Gruyter, vol. 8(4), pages 291-308, August.
    20. Kalaycılar, Eda Göksoy & Azizoğlu, Meral & Yeralan, Sencer, 2016. "A disassembly line balancing problem with fixed number of workstations," European Journal of Operational Research, Elsevier, vol. 249(2), pages 592-604.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2106-:d:163534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.