IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1843-d157882.html
   My bibliography  Save this article

A Simple Pseudo-Homogeneous Reversible Kinetic Model for the Esterification of Different Fatty Acids with Methanol in the Presence of Amberlyst-15

Author

Listed:
  • Mauro Banchero

    (Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy)

  • Giuseppe Gozzelino

    (Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy)

Abstract

Fatty acid esterification with alcohols is a crucial step in biodiesel synthesis. Biodiesel consists of long-chain alkyl esters that derive from the transesterification or hydro-esterification of the triglycerides that are contained in vegetable oils. In the first route, the esterification of the free fatty acids is an important pretreatment of the feed; in the second, it is the main reaction of the industrial process. Knowledge of appropriate kinetic models for the catalytic esterification of fatty acids with alcohols is critical in the design of biodiesel synthesis processes. In this work, the kinetic behavior of the reversible esterification of lauric, myristic, palmitic and stearic acid, which are the most common saturated fatty acids that are contained in triglyceride feedstocks for biodiesel, with methanol at different temperatures (70–150 °C) and molar ratios of the reactants (1:1–1:2–1:5) was investigated in a batch laboratory basket reactor both in the presence and absence of Amberlyst-15 as the catalyst. Results obtained with Amberlyst-15 were fitted through a ready-to-use pseudo-homogeneous reversible model suitable for process design. The kinetic model was compared with that obtained in a previous work with niobium oxide as the catalyst. With respect to the results that were obtained with niobium oxide, the influence of the chain length of the acid on the kinetic behavior was strongly reduced in the presence of Amberlyst-15. This phenomenon was ascribed to a different catalytic mechanism.

Suggested Citation

  • Mauro Banchero & Giuseppe Gozzelino, 2018. "A Simple Pseudo-Homogeneous Reversible Kinetic Model for the Esterification of Different Fatty Acids with Methanol in the Presence of Amberlyst-15," Energies, MDPI, vol. 11(7), pages 1-12, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1843-:d:157882
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1843/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1843/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barros, Suellen D.T. & Coelho, Aline V. & Lachter, Elizabeth R. & San Gil, Rosane A.S. & Dahmouche, Karim & Pais da Silva, Maria Isabel & Souza, Andrea L.F., 2013. "Esterification of lauric acid with butanol over mesoporous materials," Renewable Energy, Elsevier, vol. 50(C), pages 585-589.
    2. Pourzolfaghar, Hamed & Abnisa, Faisal & Daud, Wan Mohd Ashri Wan & Aroua, Mohamed Kheireddine, 2016. "A review of the enzymatic hydroesterification process for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 245-257.
    3. dos Santos, Letícia Karen & Hatanaka, Rafael Rodrigues & de Oliveira, José Eduardo & Flumignan, Danilo Luiz, 2017. "Experimental factorial design on hydroesterification of waste cooking oil by subcritical conditions for biodiesel production," Renewable Energy, Elsevier, vol. 114(PB), pages 574-580.
    4. Lin, Lin & Cunshan, Zhou & Vittayapadung, Saritporn & Xiangqian, Shen & Mingdong, Dong, 2011. "Opportunities and challenges for biodiesel fuel," Applied Energy, Elsevier, vol. 88(4), pages 1020-1031, April.
    5. Atadashi, I.M. & Aroua, M.K. & Aziz, A. Abdul, 2011. "Biodiesel separation and purification: A review," Renewable Energy, Elsevier, vol. 36(2), pages 437-443.
    6. Rattanaphra, Dussadee & Harvey, Adam P. & Thanapimmetha, Anusith & Srinophakun, Penjit, 2011. "Kinetic of myristic acid esterification with methanol in the presence of triglycerides over sulfated zirconia," Renewable Energy, Elsevier, vol. 36(10), pages 2679-2686.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Riky Lim & Deog-Keun Kim & Jin-Suk Lee, 2020. "Reutealis Trisperma Oil Esterification: Optimization and Kinetic Study," Energies, MDPI, vol. 13(6), pages 1-12, March.
    2. Hamnas, Amina & Unnikrishnan, G., 2023. "Bio-lubricants from vegetable oils: Characterization, modifications, applications and challenges – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    3. Carlo Pastore & Valeria D’Ambrosio, 2021. "Intensification of Processes for the Production of Ethyl Levulinate Using AlCl 3 ·6H 2 O," Energies, MDPI, vol. 14(5), pages 1-11, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaur, Navjot & Ali, Amjad, 2015. "Preparation and application of Ce/ZrO2−TiO2/SO42− as solid catalyst for the esterification of fatty acids," Renewable Energy, Elsevier, vol. 81(C), pages 421-431.
    2. Hernández-Montelongo, Rosaura & García-Sandoval, Juan Paulo & González-Álvarez, Alejandro & Dochain, Denis & Aguilar-Garnica, Efrén, 2018. "Biodiesel production in a continuous packed bed reactor with recycle: A modeling approach for an esterification system," Renewable Energy, Elsevier, vol. 116(PA), pages 857-865.
    3. Aksoy, Laçine, 2011. "Opium poppy (Papaver somniferum L.) oil for preparation of biodiesel: Optimization of conditions," Applied Energy, Elsevier, vol. 88(12), pages 4713-4718.
    4. Padula, Miquele L. & Romero, Arthur S. & Hotza, Dachamir & Innocentini, Murilo D.M. & Pinto, Maria E.G. & Pedrini, Augusto S. & Rebelatto, Evertan & Ribeiro, Luiz Fernando B. & Zin, Guilherme & Olivei, 2022. "Dehydration of fatty acid methyl ester mixtures from enzymatic biodiesel using a modified PVDF membrane," Renewable Energy, Elsevier, vol. 187(C), pages 237-247.
    5. Shelare, Sagar D. & Belkhode, Pramod N. & Nikam, Keval Chandrakant & Jathar, Laxmikant D. & Shahapurkar, Kiran & Soudagar, Manzoore Elahi M. & Veza, Ibham & Khan, T.M. Yunus & Kalam, M.A. & Nizami, Ab, 2023. "Biofuels for a sustainable future: Examining the role of nano-additives, economics, policy, internet of things, artificial intelligence and machine learning technology in biodiesel production," Energy, Elsevier, vol. 282(C).
    6. Motasemi, F. & Ani, F.N., 2012. "A review on microwave-assisted production of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4719-4733.
    7. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A. & Liaquat, A.M. & Shahabuddin, M. & Varman, M., 2012. "Prospects of biodiesel from Jatropha in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5007-5020.
    8. Atabani, A.E. & Silitonga, A.S. & Badruddin, Irfan Anjum & Mahlia, T.M.I. & Masjuki, H.H. & Mekhilef, S., 2012. "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2070-2093.
    9. Bora, Plaban & Konwar, Lakhya Jyoti & Boro, Jutika & Phukan, Mayur Mausoom & Deka, Dhanapati & Konwar, Bolin Kumar, 2014. "Hybrid biofuels from non-edible oils: A comparative standpoint with corresponding biodiesel," Applied Energy, Elsevier, vol. 135(C), pages 450-460.
    10. Babu, D. & Karvembu, R. & Anand, R., 2018. "Impact of split injection strategy on combustion, performance and emissions characteristics of biodiesel fuelled common rail direct injection assisted diesel engine," Energy, Elsevier, vol. 165(PB), pages 577-592.
    11. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2011. "Membrane biodiesel production and refining technology: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5051-5062.
    12. Thanh Xuan NguyenThi & Jean-Patrick Bazile & David Bessières, 2018. "Density Measurements of Waste Cooking Oil Biodiesel and Diesel Blends Over Extended Pressure and Temperature Ranges," Energies, MDPI, vol. 11(5), pages 1-14, May.
    13. Peralta-Ruiz, Y. & González-Delgado, A.-D. & Kafarov, V., 2013. "Evaluation of alternatives for microalgae oil extraction based on exergy analysis," Applied Energy, Elsevier, vol. 101(C), pages 226-236.
    14. Li, Zhuoxue & Yang, Depo & Huang, Miaoling & Hu, Xinjun & Shen, Jiangang & Zhao, Zhimin & Chen, Jianping, 2012. "Chrysomya megacephala (Fabricius) larvae: A new biodiesel resource," Applied Energy, Elsevier, vol. 94(C), pages 349-354.
    15. Hongbo Liu & Shuanglu Liang, 2019. "The Nexus between Energy Consumption, Biodiversity, and Economic Growth in Lancang-Mekong Cooperation (LMC): Evidence from Cointegration and Granger Causality Tests," IJERPH, MDPI, vol. 16(18), pages 1-15, September.
    16. Ko, Ja Kyong & Lee, Jae Hoon & Jung, Je Hyeong & Lee, Sun-Mi, 2020. "Recent advances and future directions in plant and yeast engineering to improve lignocellulosic biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    17. Aytav, Emre & Kocar, Günnur, 2013. "Biodiesel from the perspective of Turkey: Past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 335-350.
    18. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    19. Liu, Yang & Cheng, Xiaobei & Qin, Longjiang & Wang, Xin & Yao, Junjie & Wu, Hui, 2020. "Experimental investigation on soot formation characteristics of n-heptane/butanol isomers blends in laminar diffusion flames," Energy, Elsevier, vol. 211(C).
    20. Ida Farida & Faurani Santi Singagerda, 2021. "Volatilitiy of World Food Commodity Prices and Renewable Fuel Standard Policy," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 516-527.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1843-:d:157882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.