IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3090-d181560.html
   My bibliography  Save this article

Efficiency Optimization of a Variable Bus Voltage DC Microgrid

Author

Listed:
  • David García Elvira

    (Department of Electrical, Electronic, and Automatic Control Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain)

  • Hugo Valderrama Blaví

    (Department of Electrical, Electronic, and Automatic Control Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain)

  • Àngel Cid Pastor

    (Department of Electrical, Electronic, and Automatic Control Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain)

  • Luis Martínez Salamero

    (Department of Electrical, Electronic, and Automatic Control Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain)

Abstract

A variable bus voltage DC microgrid (MG) is simulated in Simulink for optimization purposes. It is initially controlled with a Voltage Event Control (VEC) algorithm supplemented with a State of Charge Event Control (SOCEC) algorithm. This control determines the power generated/consumed by each element of the MG based on bus voltage and battery State of Charge (SOC) values. Two supplementary strategies are proposed and evaluated to improve the DC-DC converters’ efficiency. First, bus voltage optimization control: a centralized Energy Management System (EMS) manages the battery power in order to make the bus voltage follow the optimal voltage reference. Second, online optimization of switching frequency: local drivers operate each converter at its optimal switching frequency. The two proposed optimization strategies have been verified in the simulations.

Suggested Citation

  • David García Elvira & Hugo Valderrama Blaví & Àngel Cid Pastor & Luis Martínez Salamero, 2018. "Efficiency Optimization of a Variable Bus Voltage DC Microgrid," Energies, MDPI, vol. 11(11), pages 1-21, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3090-:d:181560
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3090/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3090/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    2. Lei Zhao & Haoyu Li & Yuan Liu & Zhenwei Li, 2015. "High Efficiency Variable-Frequency Full-Bridge Converter with a Load Adaptive Control Method Based on the Loss Model," Energies, MDPI, vol. 8(4), pages 1-27, April.
    3. Yongli Wang & Yujing Huang & Yudong Wang & Fang Li & Yuanyuan Zhang & Chunzheng Tian, 2018. "Operation Optimization in a Smart Micro-Grid in the Presence of Distributed Generation and Demand Response," Sustainability, MDPI, vol. 10(3), pages 1-25, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azaioud, Hakim & Farnam, Arash & Knockaert, Jos & Vandevelde, Lieven & Desmet, Jan, 2024. "Efficiency optimisation and converterless PV integration by applying a dynamic voltage on an LVDC backbone," Applied Energy, Elsevier, vol. 356(C).
    2. Mukul Chankaya & Ikhlaq Hussain & Aijaz Ahmad & Irfan Khan & S.M. Muyeen, 2021. "Nyström Minimum Kernel Risk-Sensitive Loss Based Seamless Control of Grid-Tied PV-Hybrid Energy Storage System," Energies, MDPI, vol. 14(5), pages 1-22, March.
    3. Alfredo Padilla-Medina & Francisco Perez-Pinal & Alonso Jimenez-Garibay & Antonio Vazquez-Lopez & Juan Martinez-Nolasco, 2020. "Design and Implementation of an Energy-Management System for a Grid-Connected Residential DC Microgrid," Energies, MDPI, vol. 13(16), pages 1-30, August.
    4. David Marroqui & Ausias Garrigos & Jose M. Blanes & Roberto Gutierrez, 2019. "Photovoltaic-Driven SiC MOSFET Circuit Breaker with Latching and Current Limiting Capability," Energies, MDPI, vol. 12(23), pages 1-16, December.
    5. David Marroqui & Ausias Garrigós & Cristian Torres & Carlos Orts & Jose M. Blanes & Roberto Gutierrez, 2021. "Interleaved, Switched Inductor and High-Gain Wide Bandgap Based Boost Converter Proposal," Energies, MDPI, vol. 14(4), pages 1-11, February.
    6. Mukul Chankaya & Ikhlaq Hussain & Aijaz Ahmad & Hasmat Malik & Fausto Pedro García Márquez, 2021. "Generalized Normal Distribution Algorithm-Based Control of 3-Phase 4-Wire Grid-Tied PV-Hybrid Energy Storage System," Energies, MDPI, vol. 14(14), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farhat Afzah Samoon & Ikhlaq Hussain & Sheikh Javed Iqbal, 2023. "ILA Optimisation Based Control for Enhancing DC Link Voltage with Seamless and Adaptive VSC Control in a PV-BES Based AC Microgrid," Energies, MDPI, vol. 16(21), pages 1-23, October.
    2. Emrani-Rahaghi, Pouria & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2023. "Efficient voltage control of low voltage distribution networks using integrated optimized energy management of networked residential multi-energy microgrids," Applied Energy, Elsevier, vol. 349(C).
    3. Dimitrios Trigkas & Chrysovalantou Ziogou & Spyros Voutetakis & Simira Papadopoulou, 2021. "Virtual Energy Storage in RES-Powered Smart Grids with Nonlinear Model Predictive Control," Energies, MDPI, vol. 14(4), pages 1-22, February.
    4. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.
    5. Matija Kostelac & Lin Herenčić & Tomislav Capuder, 2022. "Planning and Operational Aspects of Individual and Clustered Multi-Energy Microgrid Options," Energies, MDPI, vol. 15(4), pages 1-17, February.
    6. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Optimal energy management in all-electric residential energy systems with heat and electricity storage," Applied Energy, Elsevier, vol. 254(C).
    7. Soheil Mohseni & Alan C. Brent & Daniel Burmester, 2020. "Community Resilience-Oriented Optimal Micro-Grid Capacity Expansion Planning: The Case of Totarabank Eco-Village, New Zealand," Energies, MDPI, vol. 13(15), pages 1-29, August.
    8. Roth, Jonathan & Martin, Amory & Miller, Clayton & Jain, Rishee K., 2020. "SynCity: Using open data to create a synthetic city of hourly building energy estimates by integrating data-driven and physics-based methods," Applied Energy, Elsevier, vol. 280(C).
    9. Hammad Alnuman & Kuo-Hsien Hsia & Mohammadreza Askari Sepestanaki & Emad M. Ahmed & Saleh Mobayen & Ammar Armghan, 2023. "Design of Continuous Finite-Time Controller Based on Adaptive Tuning Approach for Disturbed Boost Converters," Mathematics, MDPI, vol. 11(7), pages 1-23, April.
    10. Giulietti, Monica & Le Coq, Chloé & Willems, Bert & Anaya, Karim, 2019. "Smart Consumers in the Internet of Energy : Flexibility Markets & Services from Distributed Energy Resources," Other publications TiSEM 2edb43b5-bbd6-487d-abdf-7, Tilburg University, School of Economics and Management.
    11. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    12. Guodong Liu & Maximiliano F. Ferrari & Thomas B. Ollis & Kevin Tomsovic, 2022. "An MILP-Based Distributed Energy Management for Coordination of Networked Microgrids," Energies, MDPI, vol. 15(19), pages 1-20, September.
    13. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).
    14. Rahman, Syed & Khan, Irfan Ahmed & Khan, Ashraf Ali & Mallik, Ayan & Nadeem, Muhammad Faisal, 2022. "Comprehensive review & impact analysis of integrating projected electric vehicle charging load to the existing low voltage distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    15. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    16. Abbas Rabiee & Ali Abdali & Seyed Masoud Mohseni-Bonab & Mohsen Hazrati, 2021. "Risk-Averse Scheduling of Combined Heat and Power-Based Microgrids in Presence of Uncertain Distributed Energy Resources," Sustainability, MDPI, vol. 13(13), pages 1-24, June.
    17. Davarzani, Sima & Pisica, Ioana & Taylor, Gareth A. & Munisami, Kevin J., 2021. "Residential Demand Response Strategies and Applications in Active Distribution Network Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    18. Guilherme Henrique Alves & Geraldo Caixeta Guimarães & Fabricio Augusto Matheus Moura, 2023. "Battery Storage Systems Control Strategies with Intelligent Algorithms in Microgrids with Dynamic Pricing," Energies, MDPI, vol. 16(14), pages 1-30, July.
    19. Fathy, Ahmed & Ferahtia, Seydali & Rezk, Hegazy & Yousri, Dalia & Abdelkareem, Mohammad Ali & Olabi, A.G., 2022. "Optimal adaptive fuzzy management strategy for fuel cell-based DC microgrid," Energy, Elsevier, vol. 247(C).
    20. Reinauer, Tobias & Hansen, Ulrich Elmer, 2021. "Determinants of adoption in open-source hardware: A review of small wind turbines," Technovation, Elsevier, vol. 106(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3090-:d:181560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.