IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2760-d175753.html
   My bibliography  Save this article

Influence of High Loading on the Performance of Natural Graphite-Based Al Secondary Batteries

Author

Listed:
  • Mao-Chia Huang

    (Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Tainan City 71150, Taiwan)

  • Cheng-Hsien Yang

    (Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Tainan City 71150, Taiwan)

  • Chien-Chih Chiang

    (Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Tainan City 71150, Taiwan)

  • Sheng-Cheng Chiu

    (Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Tainan City 71150, Taiwan)

  • Yun-Feng Chen

    (Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Tainan City 71150, Taiwan)

  • Cong-You Lin

    (Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Tainan City 71150, Taiwan)

  • Lu-Yu Wang

    (Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Tainan City 71150, Taiwan)

  • Yen-Liang Li

    (Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Tainan City 71150, Taiwan)

  • Chang-Chung Yang

    (Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Tainan City 71150, Taiwan)

  • Wen-Sheng Chang

    (Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Tainan City 71150, Taiwan)

Abstract

In recent years, novel Al secondary batteries with Al anodes, natural graphite cathodes, and ionic liquid electrolytes have received more attention. However, most research on Al secondary batteries used lower graphite loading (<8 mg/cm 2 ), which will inhibit the batteries from commercialization in the future. Here, we prepared Al secondary batteries using Al anode, low-cost natural graphite cathode, and cheaper ionic liquid electrolyte. The effects of loading (7–12 mg/cm 2 ) on performance were investigated. Based on our observations, graphite-based Al secondary batteries (GABs) using 10 mg/cm 2 graphite electrodes had better performance of 82 mAh/g and 6.5 Wh/L at a current density of 100 mA/g. Moreover, the 10 mg/cm 2 GABs showed a long life of 250 charge–discharge cycles with a high coulombic efficiency of 98% and excellent performance rate up to 1000 mA/g.

Suggested Citation

  • Mao-Chia Huang & Cheng-Hsien Yang & Chien-Chih Chiang & Sheng-Cheng Chiu & Yun-Feng Chen & Cong-You Lin & Lu-Yu Wang & Yen-Liang Li & Chang-Chung Yang & Wen-Sheng Chang, 2018. "Influence of High Loading on the Performance of Natural Graphite-Based Al Secondary Batteries," Energies, MDPI, vol. 11(10), pages 1-12, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2760-:d:175753
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2760/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2760/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. P. Poizot & S. Laruelle & S. Grugeon & L. Dupont & J-M. Tarascon, 2000. "Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries," Nature, Nature, vol. 407(6803), pages 496-499, September.
    2. Di-Yan Wang & Chuan-Yu Wei & Meng-Chang Lin & Chun-Jern Pan & Hung-Lung Chou & Hsin-An Chen & Ming Gong & Yingpeng Wu & Chunze Yuan & Michael Angell & Yu-Ju Hsieh & Yu-Hsun Chen & Cheng-Yen Wen & Chun, 2017. "Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    3. Meng-Chang Lin & Ming Gong & Bingan Lu & Yingpeng Wu & Di-Yan Wang & Mingyun Guan & Michael Angell & Changxin Chen & Jiang Yang & Bing-Joe Hwang & Hongjie Dai, 2015. "An ultrafast rechargeable aluminium-ion battery," Nature, Nature, vol. 520(7547), pages 324-328, April.
    4. Chi Zhang & Fuwu Yan & Changqing Du & Jianqiang Kang & Richard Fiifi Turkson, 2017. "Evaluating the Degradation Mechanism and State of Health of LiFePO 4 Lithium-Ion Batteries in Real-World Plug-in Hybrid Electric Vehicles Application for Different Ageing Paths," Energies, MDPI, vol. 10(1), pages 1-13, January.
    5. Xiangyu Cui & Zhu Jing & Maji Luo & Yazhou Guo & Huimin Qiao, 2018. "A New Method for State of Charge Estimation of Lithium-Ion Batteries Using Square Root Cubature Kalman Filter," Energies, MDPI, vol. 11(1), pages 1-21, January.
    6. Ying Ching Lu & Nikolay Dimov & Shigeto Okada & Thi Hang Bui, 2018. "SnSb Alloy Blended with Hard Carbon as Anode for Na-Ion Batteries," Energies, MDPI, vol. 11(6), pages 1-10, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcin Szott & Marcin Jarnut & Jacek Kaniewski & Łukasz Pilimon & Szymon Wermiński, 2021. "Fault-Tolerant Control in a Peak-Power Reduction System of a Traction Substation with Multi-String Battery Energy Storage System," Energies, MDPI, vol. 14(15), pages 1-23, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Craig, Ben & Schoetz, Theresa & Cruden, Andrew & Ponce de Leon, Carlos, 2020. "Review of current progress in non-aqueous aluminium batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Davood Sabaghi & Zhiyong Wang & Preeti Bhauriyal & Qiongqiong Lu & Ahiud Morag & Daria Mikhailovia & Payam Hashemi & Dongqi Li & Christof Neumann & Zhongquan Liao & Anna Maria Dominic & Ali Shaygan Ni, 2023. "Ultrathin positively charged electrode skin for durable anion-intercalation battery chemistries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Wang, Bin & Wang, Shifeng & Tang, Yuanyuan & Tsang, Chi-Wing & Dai, Jinchuan & Leung, Michael K.H. & Lu, Xiao-Ying, 2019. "Micro/nanostructured MnCo2O4.5 anodes with high reversible capacity and excellent rate capability for next generation lithium-ion batteries," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    4. Jiang, Z.Y. & Qu, Z.G., 2019. "Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study," Applied Energy, Elsevier, vol. 242(C), pages 378-392.
    5. Tian, Yong & Huang, Zhijia & Tian, Jindong & Li, Xiaoyu, 2022. "State of charge estimation of lithium-ion batteries based on cubature Kalman filters with different matrix decomposition strategies," Energy, Elsevier, vol. 238(PC).
    6. Zhang, Yajun & Liu, Yajie & Wang, Jia & Zhang, Tao, 2022. "State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression," Energy, Elsevier, vol. 239(PB).
    7. Zhang, Chao & Wei, Yi-Li & Cao, Peng-Fei & Lin, Meng-Chang, 2018. "Energy storage system: Current studies on batteries and power condition system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3091-3106.
    8. Jing Hou & He He & Yan Yang & Tian Gao & Yifan Zhang, 2019. "A Variational Bayesian and Huber-Based Robust Square Root Cubature Kalman Filter for Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(9), pages 1-23, May.
    9. Golmohammadzadeh, Rabeeh & Faraji, Fariborz & Jong, Brian & Pozo-Gonzalo, Cristina & Banerjee, Parama Chakraborty, 2022. "Current challenges and future opportunities toward recycling of spent lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    10. Taegyune Yoon & Jaegyeong Kim & Jinku Kim & Jung Kyoo Lee, 2013. "Electrostatic Self-Assembly of Fe 3 O 4 Nanoparticles on Graphene Oxides for High Capacity Lithium-Ion Battery Anodes," Energies, MDPI, vol. 6(9), pages 1-11, September.
    11. Krishnan, Syam G. & Arulraj, Arunachalam & Khalid, Mohammad & Reddy, M.V. & Jose, Rajan, 2021. "Energy storage in metal cobaltite electrodes: Opportunities & challenges in magnesium cobalt oxide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    12. Alami, Abdul Hai & Allagui, Anis & Alawadhi, Hussain, 2015. "Synthesis and optical properties of electrodeposited crystalline Cu2O in the Vis–NIR range for solar selective absorbers," Renewable Energy, Elsevier, vol. 82(C), pages 21-25.
    13. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    14. Liu, Qin & Zhu, Jinghui & Zhang, Liwen & Qiu, Yejun, 2018. "Recent advances in energy materials by electrospinning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1825-1858.
    15. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
    16. Zhijing Yu & Wei Wang & Yong Zhu & Wei-Li Song & Zheng Huang & Zhe Wang & Shuqiang Jiao, 2023. "Construction of double reaction zones for long-life quasi-solid aluminum-ion batteries by realizing maximum electron transfer," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Cauda, Valentina & Pugliese, Diego & Garino, Nadia & Sacco, Adriano & Bianco, Stefano & Bella, Federico & Lamberti, Andrea & Gerbaldi, Claudio, 2014. "Multi-functional energy conversion and storage electrodes using flower-like Zinc oxide nanostructures," Energy, Elsevier, vol. 65(C), pages 639-646.
    18. Zhongbao Wei & Feng Leng & Zhongjie He & Wenyu Zhang & Kaiyuan Li, 2018. "Online State of Charge and State of Health Estimation for a Lithium-Ion Battery Based on a Data–Model Fusion Method," Energies, MDPI, vol. 11(7), pages 1-16, July.
    19. Yang-Soo Kim & Yonghoon Cho & Paul M. Nogales & Soon-Ki Jeong, 2019. "NbO 2 as a Noble Zero-Strain Material for Li-Ion Batteries: Electrochemical Redox Behavior in a Nonaqueous Solution," Energies, MDPI, vol. 12(15), pages 1-7, August.
    20. Gutiérrez-Arnillas, Esther & Álvarez, María S. & Deive, Francisco J. & Rodríguez, Ana & Sanromán, M. Ángeles, 2016. "New horizons in the enzymatic production of biodiesel using neoteric solvents," Renewable Energy, Elsevier, vol. 98(C), pages 92-100.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2760-:d:175753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.