IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41361-z.html
   My bibliography  Save this article

Construction of double reaction zones for long-life quasi-solid aluminum-ion batteries by realizing maximum electron transfer

Author

Listed:
  • Zhijing Yu

    (University of Science and Technology Beijing
    University of Science and Technology Beijing)

  • Wei Wang

    (University of Science and Technology Beijing
    University of Science and Technology Beijing)

  • Yong Zhu

    (University of Science and Technology Beijing)

  • Wei-Li Song

    (Beijing Institute of Technology)

  • Zheng Huang

    (University of Science and Technology Beijing)

  • Zhe Wang

    (University of Science and Technology Beijing)

  • Shuqiang Jiao

    (University of Science and Technology Beijing)

Abstract

Achieving high energy density and long cycling life simultaneously remains the most critical challenge for aluminum-ion batteries (AIBs), especially for high-capacity conversion-type positive electrodes suffering from shuttle effect in strongly acidic electrolytes. Herein, we develop a layered quasi-solid AIBs system with double reaction zones (DRZs, Zone 1 and Zone 2) to address such issues. Zone 1 is designed to accelerate reaction kinetics by improving wetting ability of quasi-solid electrolyte to active materials. A composite three-dimensional conductive framework (Zone 2) interwoven by gel network for ion conduction and carbon nanotube network as electronic conductor, can fix the active materials dissolved from Zone 1 to allow for continuing electrochemical reactions. Therefore, a maximum electron transfer is realized for the conversion-type mateials in DRZs, and an ultrahigh capacity (400 mAh g−1) and an ultralong cycling life (4000 cycles) are achieved. Such strategy provides a new perspective for constructing high-energy-density and long-life AIBs.

Suggested Citation

  • Zhijing Yu & Wei Wang & Yong Zhu & Wei-Li Song & Zheng Huang & Zhe Wang & Shuqiang Jiao, 2023. "Construction of double reaction zones for long-life quasi-solid aluminum-ion batteries by realizing maximum electron transfer," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41361-z
    DOI: 10.1038/s41467-023-41361-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41361-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41361-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yong Chen & Konggang Qu & Chuanqi Zhao & Li Wu & Jinsong Ren & Jiasi Wang & Xiaogang Qu, 2012. "Insights into the biomedical effects of carboxylated single-wall carbon nanotubes on telomerase and telomeres," Nature Communications, Nature, vol. 3(1), pages 1-13, January.
    2. Di-Yan Wang & Chuan-Yu Wei & Meng-Chang Lin & Chun-Jern Pan & Hung-Lung Chou & Hsin-An Chen & Ming Gong & Yingpeng Wu & Chunze Yuan & Michael Angell & Yu-Ju Hsieh & Yu-Hsun Chen & Cheng-Yen Wen & Chun, 2017. "Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    3. Dong-Joo Yoo & Martin Heeney & Florian Glöcklhofer & Jang Wook Choi, 2021. "Tetradiketone macrocycle for divalent aluminium ion batteries," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Xinhua Zheng & Zaichun Liu & Jifei Sun & Ruihao Luo & Kui Xu & Mingyu Si & Ju Kang & Yuan Yuan & Shuang Liu & Touqeer Ahmad & Taoli Jiang & Na Chen & Mingming Wang & Yan Xu & Mingyan Chuai & Zhengxin , 2023. "Constructing robust heterostructured interface for anode-free zinc batteries with ultrahigh capacities," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Quanquan Pang & Jiashen Meng & Saransh Gupta & Xufeng Hong & Chun Yuen Kwok & Ji Zhao & Yingxia Jin & Like Xu & Ozlem Karahan & Ziqi Wang & Spencer Toll & Liqiang Mai & Linda F. Nazar & Mahalingam Bal, 2022. "Fast-charging aluminium–chalcogen batteries resistant to dendritic shorting," Nature, Nature, vol. 608(7924), pages 704-711, August.
    6. Dong Jun Kim & Dong-Joo Yoo & Michael T. Otley & Aleksandrs Prokofjevs & Cristian Pezzato & Magdalena Owczarek & Seung Jong Lee & Jang Wook Choi & J. Fraser Stoddart, 2019. "Rechargeable aluminium organic batteries," Nature Energy, Nature, vol. 4(1), pages 51-59, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Franz Harke & Philipp Otto, 2023. "Solar Self-Sufficient Households as a Driving Factor for Sustainability Transformation," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    2. Yunxiang Zhao & Shan Guo & Manjing Chen & Bingan Lu & Xiaotan Zhang & Shuquan Liang & Jiang Zhou, 2023. "Tailoring grain boundary stability of zinc-titanium alloy for long-lasting aqueous zinc batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Mao-Chia Huang & Cheng-Hsien Yang & Chien-Chih Chiang & Sheng-Cheng Chiu & Yun-Feng Chen & Cong-You Lin & Lu-Yu Wang & Yen-Liang Li & Chang-Chung Yang & Wen-Sheng Chang, 2018. "Influence of High Loading on the Performance of Natural Graphite-Based Al Secondary Batteries," Energies, MDPI, vol. 11(10), pages 1-12, October.
    4. Craig, Ben & Schoetz, Theresa & Cruden, Andrew & Ponce de Leon, Carlos, 2020. "Review of current progress in non-aqueous aluminium batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Xiaotan Zhang & Jiangxu Li & Yanfen Liu & Bingan Lu & Shuquan Liang & Jiang Zhou, 2024. "Single [0001]-oriented zinc metal anode enables sustainable zinc batteries," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Jiashen Meng & Xufeng Hong & Zhitong Xiao & Linhan Xu & Lujun Zhu & Yongfeng Jia & Fang Liu & Liqiang Mai & Quanquan Pang, 2024. "Rapid-charging aluminium-sulfur batteries operated at 85 °C with a quaternary molten salt electrolyte," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Jiashen Meng & Xuhui Yao & Xufeng Hong & Lujun Zhu & Zhitong Xiao & Yongfeng Jia & Fang Liu & Huimin Song & Yunlong Zhao & Quanquan Pang, 2023. "A solution-to-solid conversion chemistry enables ultrafast-charging and long-lived molten salt aluminium batteries," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Davood Sabaghi & Zhiyong Wang & Preeti Bhauriyal & Qiongqiong Lu & Ahiud Morag & Daria Mikhailovia & Payam Hashemi & Dongqi Li & Christof Neumann & Zhongquan Liao & Anna Maria Dominic & Ali Shaygan Ni, 2023. "Ultrathin positively charged electrode skin for durable anion-intercalation battery chemistries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41361-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.