IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i8p1211-d108297.html
   My bibliography  Save this article

Performance Evaluation of a Hydrogen-Based Clean Energy Hub with Electrolyzers as a Self-Regulating Demand Response Management Mechanism

Author

Listed:
  • Weiliang Wang

    (Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

  • Dan Wang

    (Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

  • Hongjie Jia

    (Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

  • Guixiong He

    (China Electric Power Research Institute, Haidian District, Beijing 100192, China)

  • Qing’e Hu

    (Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

  • Pang-Chieh Sui

    (School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China)

  • Menghua Fan

    (State Grid Energy Research Institute, Changping District, Beijing 102249, China)

Abstract

Energy management of hybrid resources has become a critical issue in integrated energy system analysis. In this study, as a self-regulating demand response (DR) management mechanism, deferrable electrolyzers are used as a main controlled resource in a hydrogen-based clean energy hub (CEH), which includes a traditional generation plant (TGP), a low-carbon generation plant (LGP), and wind energy. Based on the hysteresis control model for aggregated electrolyzers, a comfort-constrained optimal energy state regulation (OESR) control strategy is implemented to model the deregulation feature of aggregated electrolyzers. The electrolyzers’ population can be integrated as a controlled efficient power plant (EPP) to provide the virtual spinning reserve for CEH. As a flexible and self-regulating participant, the electrolyzer-based EPP is integrated into the hybrid resource constrained optimization model; this reduces the total cost of CEH and carbon emissions and improves the integration of wind energy. Combined with TGP, LGP, and wind energy, the simulation results show that the deployment of aggregated electrolyzers on both the supply and demand sides of the CEH contributes to significant amounts of low-carbon hydrogen. The simulation also illustrates that the DR control strategy has a positive effect on active power and reserve re-dispatch.

Suggested Citation

  • Weiliang Wang & Dan Wang & Hongjie Jia & Guixiong He & Qing’e Hu & Pang-Chieh Sui & Menghua Fan, 2017. "Performance Evaluation of a Hydrogen-Based Clean Energy Hub with Electrolyzers as a Self-Regulating Demand Response Management Mechanism," Energies, MDPI, vol. 10(8), pages 1-23, August.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1211-:d:108297
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/8/1211/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/8/1211/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Anca D. & Altin, Müfit & Iov, Florin, 2016. "Provision of enhanced ancillary services from wind power plants – Examples and challenges," Renewable Energy, Elsevier, vol. 97(C), pages 8-18.
    2. Guandalini, Giulio & Campanari, Stefano & Romano, Matteo C., 2015. "Power-to-gas plants and gas turbines for improved wind energy dispatchability: Energy and economic assessment," Applied Energy, Elsevier, vol. 147(C), pages 117-130.
    3. Davide Astiaso Garcia & Federica Barbanera & Fabrizio Cumo & Umberto Di Matteo & Benedetto Nastasi, 2016. "Expert Opinion Analysis on Renewable Hydrogen Storage Systems Potential in Europe," Energies, MDPI, vol. 9(11), pages 1-22, November.
    4. Tan, Sieting & Yang, Jin & Yan, Jinyue & Lee, Chewtin & Hashim, Haslenda & Chen, Bin, 2017. "A holistic low carbon city indicator framework for sustainable development," Applied Energy, Elsevier, vol. 185(P2), pages 1919-1930.
    5. Wang, D. & Parkinson, S. & Miao, W. & Jia, H. & Crawford, C. & Djilali, N., 2012. "Online voltage security assessment considering comfort-constrained demand response control of distributed heat pump systems," Applied Energy, Elsevier, vol. 96(C), pages 104-114.
    6. Wang, D. & Parkinson, S. & Miao, W. & Jia, H. & Crawford, C. & Djilali, N., 2013. "Hierarchical market integration of responsive loads as spinning reserve," Applied Energy, Elsevier, vol. 104(C), pages 229-238.
    7. Troncoso, E. & Newborough, M., 2010. "Electrolysers as a load management mechanism for power systems with wind power and zero-carbon thermal power plant," Applied Energy, Elsevier, vol. 87(1), pages 1-15, January.
    8. Budzianowski, Wojciech M. & Postawa, Karol, 2017. "Renewable energy from biogas with reduced carbon dioxide footprint: Implications of applying different plant configurations and operating pressures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 852-868.
    9. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2016. "Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 850-866.
    10. Arash Khalilnejad & Aditya Sundararajan & Alireza Abbaspour & Arif Sarwat, 2016. "Optimal Operation of Combined Photovoltaic Electrolyzer Systems," Energies, MDPI, vol. 9(5), pages 1-12, April.
    11. Wang, Dan & Zhou, Yue & Jia, Hongjie & Wang, Chengshan & Lu, Ning & Sui, Pang-Chieh & Fan, Menghua, 2016. "An energy-constrained state priority list model using deferrable electrolyzers as a load management mechanism," Applied Energy, Elsevier, vol. 167(C), pages 201-210.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Morteza Vahid-Ghavidel & Mohammad Sadegh Javadi & Matthew Gough & Sérgio F. Santos & Miadreza Shafie-khah & João P.S. Catalão, 2020. "Demand Response Programs in Multi-Energy Systems: A Review," Energies, MDPI, vol. 13(17), pages 1-17, August.
    2. Weiliang Wang & Dan Wang & Liu Liu & Hongjie Jia & Yunqiang Zhi & Zhengji Meng & Wei Du, 2019. "Research on Modeling and Hierarchical Scheduling of a Generalized Multi-Source Energy Storage System in an Integrated Energy Distribution System," Energies, MDPI, vol. 12(2), pages 1-28, January.
    3. Tiejiang Yuan & Qingxi Duan & Xiangping Chen & Xufeng Yuan & Wenping Cao & Juan Hu & Quanmin Zhu, 2017. "Coordinated Control of a Wind-Methanol-Fuel Cell System with Hydrogen Storage," Energies, MDPI, vol. 10(12), pages 1-21, December.
    4. He, Gui-Xiong & Yan, Hua-guang & Chen, Lei & Tao, Wen-Quan, 2020. "Economic dispatch analysis of regional Electricity–Gas system integrated with distributed gas injection," Energy, Elsevier, vol. 201(C).
    5. Yongjie Zhong & Dongliang Xie & Suwei Zhai & Yonghui Sun, 2018. "Day-Ahead Hierarchical Steady State Optimal Operation for Integrated Energy System Based on Energy Hub," Energies, MDPI, vol. 11(10), pages 1-18, October.
    6. Yao Yao & Peichao Zhang & Sijie Chen, 2019. "Aggregating Large-Scale Generalized Energy Storages to Participate in the Energy and Regulation Market," Energies, MDPI, vol. 12(6), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbara Uliasz-Misiak & Joanna Lewandowska-Śmierzchalska & Rafał Matuła & Radosław Tarkowski, 2022. "Prospects for the Implementation of Underground Hydrogen Storage in the EU," Energies, MDPI, vol. 15(24), pages 1-17, December.
    2. De Coninck, Roel & Helsen, Lieve, 2016. "Quantification of flexibility in buildings by cost curves – Methodology and application," Applied Energy, Elsevier, vol. 162(C), pages 653-665.
    3. McDonagh, Shane & Ahmed, Shorif & Desmond, Cian & Murphy, Jerry D, 2020. "Hydrogen from offshore wind: Investor perspective on the profitability of a hybrid system including for curtailment," Applied Energy, Elsevier, vol. 265(C).
    4. Tarkowski, R. & Uliasz-Misiak, B., 2022. "Towards underground hydrogen storage: A review of barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    5. Wang, Dan & Zhou, Yue & Jia, Hongjie & Wang, Chengshan & Lu, Ning & Sui, Pang-Chieh & Fan, Menghua, 2016. "An energy-constrained state priority list model using deferrable electrolyzers as a load management mechanism," Applied Energy, Elsevier, vol. 167(C), pages 201-210.
    6. Quarton, Christopher J. & Samsatli, Sheila, 2018. "Power-to-gas for injection into the gas grid: What can we learn from real-life projects, economic assessments and systems modelling?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 302-316.
    7. Patteeuw, Dieter & Bruninx, Kenneth & Arteconi, Alessia & Delarue, Erik & D’haeseleer, William & Helsen, Lieve, 2015. "Integrated modeling of active demand response with electric heating systems coupled to thermal energy storage systems," Applied Energy, Elsevier, vol. 151(C), pages 306-319.
    8. Fu, Yangyang & O'Neill, Zheng & Wen, Jin & Pertzborn, Amanda & Bushby, Steven T., 2022. "Utilizing commercial heating, ventilating, and air conditioning systems to provide grid services: A review," Applied Energy, Elsevier, vol. 307(C).
    9. Zaiter, Issa & Ramadan, Mohamad & Bouabid, Ali & Mayyas, Ahmad & El-Fadel, Mutasem & Mezher, Toufic, 2024. "Enabling industrial decarbonization: Framework for hydrogen integration in the industrial energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    10. Behboodi, Sahand & Chassin, David P. & Crawford, Curran & Djilali, Ned, 2016. "Renewable resources portfolio optimization in the presence of demand response," Applied Energy, Elsevier, vol. 162(C), pages 139-148.
    11. Hedegaard, Karsten & Balyk, Olexandr, 2013. "Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks," Energy, Elsevier, vol. 63(C), pages 356-365.
    12. Schlör, Holger & Venghaus, Sandra & Hake, Jürgen-Friedrich, 2018. "The FEW-Nexus city index – Measuring urban resilience," Applied Energy, Elsevier, vol. 210(C), pages 382-392.
    13. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    14. Yanxiao Jiang & Zhou Huang, 2024. "Impact of urban vitality on carbon emission—an analysis of 222 Chinese cities based on the spatial Durbin model," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-15, December.
    15. Ushnik Mukherjee & Azadeh Maroufmashat & Apurva Narayan & Ali Elkamel & Michael Fowler, 2017. "A Stochastic Programming Approach for the Planning and Operation of a Power to Gas Energy Hub with Multiple Energy Recovery Pathways," Energies, MDPI, vol. 10(7), pages 1-27, June.
    16. Mamo Abawalo & Krzysztof Pikoń & Marcin Landrat & Waldemar Ścierski, 2025. "Hydrogen Production from Biowaste: A Systematic Review of Conversion Technologies, Environmental Impacts, and Future Perspectives," Energies, MDPI, vol. 18(17), pages 1-42, August.
    17. Du, Xiaoyun & Meng, Conghui & Guo, Zhenhua & Yan, Hang, 2023. "An improved approach for measuring the efficiency of low carbon city practice in China," Energy, Elsevier, vol. 268(C).
    18. Lin, Boqiang & Zhu, Junpeng, 2019. "Impact of energy saving and emission reduction policy on urban sustainable development: Empirical evidence from China," Applied Energy, Elsevier, vol. 239(C), pages 12-22.
    19. Hugo Algarvio & Fernando Lopes & António Couto & Ana Estanqueiro, 2019. "Participation of wind power producers in day‐ahead and balancing markets: An overview and a simulation‐based study," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    20. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1211-:d:108297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.