IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i12p2120-d122751.html
   My bibliography  Save this article

Measuring Renewable Energy Development in the Eastern Bloc of the European Union

Author

Listed:
  • Daniela Cristina Momete

    (Faculty of Entrepreneurship, Business Engineering and Management, Department of Economic Engineering, University POLITEHNICA of Bucharest, Spl. Independentei, No. 313, S6, Bucharest RO-060042, Romania)

Abstract

This paper aims to investigate the energy development in terms of renewable energy in the Eastern Bloc European Union member states. Energy is a topic of planetary implications and the analysis of the development of renewable energy sources (RES) in parts of the world where the fossil fuels are scarce is of tremendous importance. In the first section, the paper concisely explores the energy landscape of the European Union (EU), revealing important concerns. The second section introduces an index of renewable energy development (IRED) which captures the complexity of the development of RES and is based on two components, each containing three factors built on efforts and outcomes in RES development. IRED is further applied on a cross-country analysis based on the Eastern Bloc of the EU member states for 2005–2015 interval, revealing the best and worst performers. The application of IRED might contribute to a better understanding of the needed efforts required by different countries in their quest towards energy security, efficient energy use and emissions control. The findings of this paper might conduct to the identification of the best practices which could be spread throughout EU and might contribute to a more rigorous development of policymaking in the energy area.

Suggested Citation

  • Daniela Cristina Momete, 2017. "Measuring Renewable Energy Development in the Eastern Bloc of the European Union," Energies, MDPI, vol. 10(12), pages 1-13, December.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2120-:d:122751
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/12/2120/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/12/2120/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patrick Nussbaumer & Morgan Bazilian & Vijay Modi & Kandeh K. Yumkella, 2011. "Measuring Energy Poverty: Focusing on What Matters," OPHI Working Papers 42, Queen Elizabeth House, University of Oxford.
    2. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    3. Iddrisu, Insah & Bhattacharyya, Subhes C., 2015. "Sustainable Energy Development Index: A multi-dimensional indicator for measuring sustainable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 513-530.
    4. Menegaki, Angeliki N., 2013. "Growth and renewable energy in Europe: Benchmarking with data envelopment analysis," Renewable Energy, Elsevier, vol. 60(C), pages 363-369.
    5. Daniel Ştefan Armeanu & Georgeta Vintilă & Ştefan Cristian Gherghina, 2017. "Does Renewable Energy Drive Sustainable Economic Growth? Multivariate Panel Data Evidence for EU-28 Countries," Energies, MDPI, vol. 10(3), pages 1-21, March.
    6. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wentao Yang & Fushuan Wen & Ke Wang & Yuchun Huang & Md. Abdus Salam, 2018. "Modeling of a District Heating System and Optimal Heat-Power Flow," Energies, MDPI, vol. 11(4), pages 1-19, April.
    2. Katarzyna Chudy-Laskowska & Tomasz Pisula, 2022. "An Analysis of the Use of Energy from Conventional Fossil Fuels and Green Renewable Energy in the Context of the European Union’s Planned Energy Transformation," Energies, MDPI, vol. 15(19), pages 1-23, October.
    3. Ewa Chodakowska & Joanicjusz Nazarko, 2020. "Assessing the Performance of Sustainable Development Goals of EU Countries: Hard and Soft Data Integration," Energies, MDPI, vol. 13(13), pages 1-26, July.
    4. Vaclovas Miskinis & Arvydas Galinis & Inga Konstantinaviciute & Vidas Lekavicius & Eimantas Neniskis, 2019. "Comparative Analysis of the Energy Sector Development Trends and Forecast of Final Energy Demand in the Baltic States," Sustainability, MDPI, vol. 11(2), pages 1-27, January.
    5. Jarosław Brodny & Magdalena Tutak & Saqib Ahmad Saki, 2020. "Forecasting the Structure of Energy Production from Renewable Energy Sources and Biofuels in Poland," Energies, MDPI, vol. 13(10), pages 1-31, May.
    6. Daniela Cristina Momete, 2023. "Salient Insights on the Performance of EU Member States on the Road towards an Energy-Efficient Future," Energies, MDPI, vol. 16(2), pages 1-17, January.
    7. Magdalena Tutak & Jarosław Brodny & Peter Bindzár, 2021. "Assessing the Level of Energy and Climate Sustainability in the European Union Countries in the Context of the European Green Deal Strategy and Agenda 2030," Energies, MDPI, vol. 14(6), pages 1-32, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    2. Bessi, Alessandro & Guidolin, Mariangela & Manfredi, Piero, 2021. "The role of gas on future perspectives of renewable energy diffusion: Bridging technology or lock-in?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Markard, Jochen & Hoffmann, Volker H., 2016. "Analysis of complementarities: Framework and examples from the energy transition," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 63-75.
    4. Gürsan, C. & de Gooyert, V., 2021. "The systemic impact of a transition fuel: Does natural gas help or hinder the energy transition?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    5. Le Thanh Tiep & Ngo Quang Huan & Tran Thi Thuy Hong, 2020. "The Impact of Renewable Energy on Sustainable Economic Growth in Vietnam," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 359-369.
    6. Kuokkanen, A. & Nurmi, A. & Mikkilä, M. & Kuisma, M. & Kahiluoto, H. & Linnanen, L., 2018. "Agency in regime destabilization through the selection environment: The Finnish food system’s sustainability transition," Research Policy, Elsevier, vol. 47(8), pages 1513-1522.
    7. Miklós Antal & Ardjan Gazheli & Jeroen C.J.M. van den Bergh, 2012. "Behavioural Foundations of Sustainability Transitions. WWWforEurope Working Paper No. 3," WIFO Studies, WIFO, number 46424, April.
    8. Erlinghagen, Sabine & Markard, Jochen, 2012. "Smart grids and the transformation of the electricity sector: ICT firms as potential catalysts for sectoral change," Energy Policy, Elsevier, vol. 51(C), pages 895-906.
    9. Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.
    10. Broto, Vanesa Castán, 2017. "Energy landscapes and urban trajectories towards sustainability," Energy Policy, Elsevier, vol. 108(C), pages 755-764.
    11. Edmondson, Duncan L. & Kern, Florian & Rogge, Karoline S., 2019. "The co-evolution of policy mixes and socio-technical systems: Towards a conceptual framework of policy mix feedback in sustainability transitions," Research Policy, Elsevier, vol. 48(10).
    12. Dierk Bauknecht & Allan Dahl Andersen & Karoline Dunne, 2020. "Challenges for electricity network governance in Energy transitions: Insights from Norway," Working Papers on Innovation Studies 20200115, Centre for Technology, Innovation and Culture, University of Oslo.
    13. Mohammed, Sayeed & Desha, Cheryl & Goonetilleke, Ashantha, 2022. "Investigating low-carbon pathways for hydrocarbon-dependent rentier states: Economic transition in Qatar," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    14. Köhrsen, Jens, 2018. "Exogenous shocks, social skill, and power: Urban energy transitions as social fields," Energy Policy, Elsevier, vol. 117(C), pages 307-315.
    15. Christoph Mazur & Gregory J. Offer & Marcello Contestabile & Nigel Brandon Brandon, 2018. "Comparing the Effects of Vehicle Automation, Policy-Making and Changed User Preferences on the Uptake of Electric Cars and Emissions from Transport," Sustainability, MDPI, vol. 10(3), pages 1-19, March.
    16. Steffen, Bjarne & Karplus, Valerie & Schmidt, Tobias S., 2022. "State ownership and technology adoption: The case of electric utilities and renewable energy," Research Policy, Elsevier, vol. 51(6).
    17. Farrelly, M.A. & Tawfik, S., 2020. "Engaging in disruption: A review of emerging microgrids in Victoria, Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    18. Pesch, Udo, 2015. "Tracing discursive space: Agency and change in sustainability transitions," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 379-388.
    19. Eggimann, Sven & Truffer, Bernhard & Feldmann, Ulrike & Maurer, Max, 2018. "Screening European market potentials for small modular wastewater treatment systems – an inroad to sustainability transitions in urban water management?," Land Use Policy, Elsevier, vol. 78(C), pages 711-725.
    20. Zeppini, Paolo, 2015. "A discrete choice model of transitions to sustainable technologies," Journal of Economic Behavior & Organization, Elsevier, vol. 112(C), pages 187-203.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2120-:d:122751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.