IDEAS home Printed from https://ideas.repec.org/a/gam/jcommo/v1y2022i2p8-126d965381.html
   My bibliography  Save this article

Environmental Effects of Commodity Trade vs. Service Trade in Developing Countries

Author

Listed:
  • Mohammad Zohaib Saeed

    (School of Accounting, Finance, Economics and Decision Sciences, Western Illinois University, 1 University Circle, Macomb, IL 61455, USA)

  • Shankar Ghimire

    (School of Accounting, Finance, Economics and Decision Sciences, Western Illinois University, 1 University Circle, Macomb, IL 61455, USA)

Abstract

Increasing levels of carbon emissions have been a growing concern worldwide because of their adverse environmental effects. In that context, this paper examines the association between different categories of trade and carbon dioxide emissions. In particular, we analyze whether total trade, commodity trade, and service trade affect the environment differently. The analysis is based on panel data for 147 developing countries for the period from 1960 to 2020. Methodologically, the fixed-effects model, as suggested by the Hausman test, is used to examine the relationships. We present two main conclusions: (1) overall trade increases CO 2 emissions, and (2) commodity trade contributes to higher levels of CO 2 emissions than service trade. These results have important policy implications—climate change policies should target commodity trade sectors to help reduce environmental carbon emissions.

Suggested Citation

  • Mohammad Zohaib Saeed & Shankar Ghimire, 2022. "Environmental Effects of Commodity Trade vs. Service Trade in Developing Countries," Commodities, MDPI, vol. 1(2), pages 1-12, November.
  • Handle: RePEc:gam:jcommo:v:1:y:2022:i:2:p:8-126:d:965381
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2813-2432/1/2/8/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2813-2432/1/2/8/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    2. Shahbaz, Muhammad & Nasreen, Samia & Ahmed, Khalid & Hammoudeh, Shawkat, 2017. "Trade openness–carbon emissions nexus: The importance of turning points of trade openness for country panels," Energy Economics, Elsevier, vol. 61(C), pages 221-232.
    3. Sharma, Susan Sunila, 2011. "Determinants of carbon dioxide emissions: Empirical evidence from 69 countries," Applied Energy, Elsevier, vol. 88(1), pages 376-382, January.
    4. Ali Raza & Hongguang Sui & Kittisak Jermsittiparsert & Wioletta Żukiewicz-Sobczak & Pawel Sobczak, 2021. "Trade Liberalization and Environmental Performance Index: Mediation Role of Climate Change Performance and Greenfield Investment," Sustainability, MDPI, vol. 13(17), pages 1-16, August.
    5. Jussi LANKOSKI, 1997. "Environmental Effects Of Agricultural Trade Liberalization And Domestic Agricultural Policy Reforms," UNCTAD Discussion Papers 126, United Nations Conference on Trade and Development.
    6. Dinda, Soumyananda, 2004. "Environmental Kuznets Curve Hypothesis: A Survey," Ecological Economics, Elsevier, vol. 49(4), pages 431-455, August.
    7. C. T. Vidya & K. P. Prabheesh, 2020. "Implications of COVID-19 Pandemic on the Global Trade Networks," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 56(10), pages 2408-2421, August.
    8. Ian Goldin, 1990. "Comparative Advantage: Theory and Application to Developing Country Agriculture," OECD Development Centre Working Papers 16, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeong Hwan Bae & Dmitriy D. Li & Meenakshi Rishi, 2017. "Determinants of CO emission for post-Soviet Union independent countries," Climate Policy, Taylor & Francis Journals, vol. 17(5), pages 591-615, July.
    2. Yashar Tarverdi, 2018. "Aspects of Governance and $$\hbox {CO}_2$$ CO 2 Emissions: A Non-linear Panel Data Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 69(1), pages 167-194, January.
    3. Hanen Ragoubi & Zouheir Mighri, 2021. "Spillover effects of trade openness on CO2 emissions in middle‐income countries: A spatial panel data approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(3), pages 835-877, June.
    4. Mehmet Demiral & Emrah Eray Akça & Ipek Tekin, 2021. "Predictors of global carbon dioxide emissions: Do stringent environmental policies matter?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18337-18361, December.
    5. Emilio Padilla Rosa & Evans Jadotte, 2023. "The determinants of the inequality in CO2 emissions per capita between developing countries and their implications for environmental policy," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(1), pages 151-169, February.
    6. Juan Antonio Duro & Jordi Teixidó-Figueras & Emilio Padilla, 2017. "The Causal Factors of International Inequality in $$\hbox {CO}_{2}$$ CO 2 Emissions Per Capita: A Regression-Based Inequality Decomposition Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 683-700, August.
    7. Taguchi, Hiroyuki, 2024. "Air pollutions and its control governance in Chinese provinces in post-COVID-19 era: panel estimations of provincial environmental Kuznets curves," MPRA Paper 121488, University Library of Munich, Germany.
    8. Ajanaku, B.A. & Collins, A.R., 2021. "Economic growth and deforestation in African countries: Is the environmental Kuznets curve hypothesis applicable?," Forest Policy and Economics, Elsevier, vol. 129(C).
    9. Maranzano, Paolo & Cerdeira Bento, Joao Paulo & Manera, Matteo, 2021. "The Role of Education and Income Inequality on Environmental Quality. A Panel Data Analysis of the EKC Hypothesis on OECD," FEEM Working Papers 310225, Fondazione Eni Enrico Mattei (FEEM).
    10. Arminen, Heli & Menegaki, Angeliki N., 2019. "Corruption, climate and the energy-environment-growth nexus," Energy Economics, Elsevier, vol. 80(C), pages 621-634.
    11. Le Hoang Phong, 2019. "Globalization, Financial Development, and Environmental Degradation in the Presence of Environmental Kuznets Curve: Evidence from ASEAN-5 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 40-50.
    12. Kentaka Aruga, 2019. "Investigating the Energy-Environmental Kuznets Curve Hypothesis for the Asia-Pacific Region," Sustainability, MDPI, vol. 11(8), pages 1-12, April.
    13. Cerdeira Bento, João Paulo, 2014. "The determinants of CO2 emissions: empirical evidence from Italy," MPRA Paper 59166, University Library of Munich, Germany.
    14. Kangyin Dong & Xiucheng Dong & Qingzhe Jiang, 2020. "How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels," The World Economy, Wiley Blackwell, vol. 43(6), pages 1665-1698, June.
    15. Nnamdi Chinwendu Nwaeze & Kingsley Ikechukwu Okere & Izuchukwu Ogbodo & Obumneke Bob Muoneke & Ifeoma Nwakaego Sandra Ngini & Samuel Uchezuike Ani, 2023. "Dynamic linkages between tourism, economic growth, trade, energy demand and carbon emission: evidence from EU," Future Business Journal, Springer, vol. 9(1), pages 1-12, December.
    16. Miomir Jovanović & Ljiljana Kašćelan & Aleksandra Despotović & Vladimir Kašćelan, 2015. "The Impact of Agro-Economic Factors on GHG Emissions: Evidence from European Developing and Advanced Economies," Sustainability, MDPI, vol. 7(12), pages 1-21, December.
    17. Bo Yang & Minhaj Ali & Shujahat Haider Hashmi & Mohsin Shabir, 2020. "Income Inequality and CO 2 Emissions in Developing Countries: The Moderating Role of Financial Instability," Sustainability, MDPI, vol. 12(17), pages 1-24, August.
    18. Barra, Cristian & Zotti, Roberto, 2016. "Investigating the impact of national income on environmental pollution. International evidence," MPRA Paper 74149, University Library of Munich, Germany.
    19. Omri, Anis, 2013. "CO2 emissions, energy consumption and economic growth nexus in MENA countries: Evidence from simultaneous equations models," Energy Economics, Elsevier, vol. 40(C), pages 657-664.
    20. Xiaoping He & Xin Yao, 2017. "Foreign Direct Investments and the Environmental Kuznets Curve: New Evidence from Chinese Provinces," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 53(1), pages 12-25, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcommo:v:1:y:2022:i:2:p:8-126:d:965381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.