IDEAS home Printed from https://ideas.repec.org/a/gam/jcltec/v3y2021i4p40-684d640290.html
   My bibliography  Save this article

Hybrid Hydrogen–PV–e-Mobility Industrial Energy Community Concept—A Technology Feasibility Study

Author

Listed:
  • Istvan Vokony

    (Department of Electric Energy, Budapest University of Technology and Economics, 1111 Budapest, Hungary)

Abstract

As renewable energy sources are spreading, the problems of energy usage, transport and storage arise more frequently. In order that the performance of energy producing units from renewable sources, which have a relatively low efficiency, should not be decreased further, and to promote sustainable energy consumption solutions, a living lab conception was elaborated in this project. At the pilot site, the produced energy (by PV panels, gas turbines/engines) is stored in numerous ways, including hydrogen production. The following uses of hydrogen are explored: (i) feeding it into the national natural gas network; (ii) selling it at a H-CNG (compressed natural gas) filling station; (iii) using it in fuel cells to produce electricity. This article introduces the overall implementation plan, which can serve as a model for the hybrid energy communities to be established in the future.

Suggested Citation

  • Istvan Vokony, 2021. "Hybrid Hydrogen–PV–e-Mobility Industrial Energy Community Concept—A Technology Feasibility Study," Clean Technol., MDPI, vol. 3(4), pages 1-15, September.
  • Handle: RePEc:gam:jcltec:v:3:y:2021:i:4:p:40-684:d:640290
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8797/3/4/40/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8797/3/4/40/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ludvik Viktorsson & Jukka Taneli Heinonen & Jon Bjorn Skulason & Runar Unnthorsson, 2017. "A Step towards the Hydrogen Economy—A Life Cycle Cost Analysis of A Hydrogen Refueling Station," Energies, MDPI, vol. 10(6), pages 1-15, May.
    2. Alexandros Sotirios Anifantis & Andrea Colantoni & Simone Pascuzzi & Francesco Santoro, 2018. "Photovoltaic and Hydrogen Plant Integrated with a Gas Heat Pump for Greenhouse Heating: A Mathematical Study," Sustainability, MDPI, vol. 10(2), pages 1-12, February.
    3. Raluca-Andreea Felseghi & Elena Carcadea & Maria Simona Raboaca & Cătălin Nicolae TRUFIN & Constantin Filote, 2019. "Hydrogen Fuel Cell Technology for the Sustainable Future of Stationary Applications," Energies, MDPI, vol. 12(23), pages 1-28, December.
    4. Hemmati, Reza & Mehrjerdi, Hasan & Bornapour, Mosayeb, 2020. "Hybrid hydrogen-battery storage to smooth solar energy volatility and energy arbitrage considering uncertain electrical-thermal loads," Renewable Energy, Elsevier, vol. 154(C), pages 1180-1187.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khatiwada, Dilip & Vasudevan, Rohan Adithya & Santos, Bruno Henrique, 2022. "Decarbonization of natural gas systems in the EU – Costs, barriers, and constraints of hydrogen production with a case study in Portugal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Ratikorn Sornumpol & Dang Saebea & Amornchai Arpornwichanop & Yaneeporn Patcharavorachot, 2023. "Process Optimization and CO 2 Emission Analysis of Coal/Biomass Gasification Integrated with a Chemical Looping Process," Energies, MDPI, vol. 16(6), pages 1-17, March.
    3. Artur Kraszkiewicz & Artur Przywara & Alexandros Sotirios Anifantis, 2020. "Impact of Ignition Technique on Pollutants Emission during the Combustion of Selected Solid Biofuels," Energies, MDPI, vol. 13(10), pages 1-13, May.
    4. Ali Dargahi & Khezr Sanjani & Morteza Nazari-Heris & Behnam Mohammadi-Ivatloo & Sajjad Tohidi & Mousa Marzband, 2020. "Scheduling of Air Conditioning and Thermal Energy Storage Systems Considering Demand Response Programs," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
    5. Khomein, Piyachai & Ketelaars, Wesley & Lap, Tijs & Liu, Gao, 2021. "Sulfonated aromatic polymer as a future proton exchange membrane: A review of sulfonation and crosslinking methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. Vidas, Leonardo & Castro, Rui & Bosisio, Alessandro & Pires, Armando, 2024. "Optimal sizing of renewables-to-hydrogen systems in a suitable-site-selection geospatial framework: The case study of Italy and Portugal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    7. Oleksandra Shepel & Jonas Matijošius & Alfredas Rimkus & Olga Orynycz & Karol Tucki & Antoni Świć, 2022. "Combustion, Ecological, and Energetic Indicators for Mixtures of Hydrotreated Vegetable Oil (HVO) with Duck Fat Applied as Fuel in a Compression Ignition Engine," Energies, MDPI, vol. 15(21), pages 1-24, October.
    8. Matteo Genovese & David Blekhman & Michael Dray & Francesco Piraino & Petronilla Fragiacomo, 2023. "Experimental Comparison of Hydrogen Refueling with Directly Pressurized vs. Cascade Method," Energies, MDPI, vol. 16(15), pages 1-14, August.
    9. Vijai Kaarthi Visvanathan & Karthikeyan Palaniswamy & Dineshkumar Ponnaiyan & Mathan Chandran & Thanarajan Kumaresan & Jegathishkumar Ramasamy & Senthilarasu Sundaram, 2023. "Fuel Cell Products for Sustainable Transportation and Stationary Power Generation: Review on Market Perspective," Energies, MDPI, vol. 16(6), pages 1-21, March.
    10. Raluca-Andreea Felseghi & Ioan Așchilean & Nicoleta Cobîrzan & Andrei Mircea Bolboacă & Maria Simona Raboaca, 2021. "Optimal Synergy between Photovoltaic Panels and Hydrogen Fuel Cells for Green Power Supply of a Green Building—A Case Study," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    11. Razzaqul Ahshan, 2021. "Potential and Economic Analysis of Solar-to-Hydrogen Production in the Sultanate of Oman," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    12. Fan, Jing-Li & Yu, Pengwei & Li, Kai & Xu, Mao & Zhang, Xian, 2022. "A levelized cost of hydrogen (LCOH) comparison of coal-to-hydrogen with CCS and water electrolysis powered by renewable energy in China," Energy, Elsevier, vol. 242(C).
    13. Wagner, Dennis & Walther, Grit, 2024. "Techno-economic analysis of mixed battery and fuel cell electric bus fleets: A case study," Applied Energy, Elsevier, vol. 376(PA).
    14. Cameron Wells & Roberto Minunno & Heap-Yih Chong & Gregory M. Morrison, 2022. "Strategies for the Adoption of Hydrogen-Based Energy Storage Systems: An Exploratory Study in Australia," Energies, MDPI, vol. 15(16), pages 1-15, August.
    15. Tee, Wei Hown & Gan, Chin Kim & Sardi, Junainah, 2024. "Benefits of energy storage systems and its potential applications in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    16. Petronilla Fragiacomo & Francesco Piraino & Matteo Genovese & Lorenzo Flaccomio Nardi Dei & Daria Donati & Michele Vincenzo Migliarese Caputi & Domenico Borello, 2022. "Sizing and Performance Analysis of Hydrogen- and Battery-Based Powertrains, Integrated into a Passenger Train for a Regional Track, Located in Calabria (Italy)," Energies, MDPI, vol. 15(16), pages 1-20, August.
    17. Artur Nemś & Magdalena Nemś & Klaudia Świder, 2018. "Analysis of the Possibilities of Using a Heat Pump for Greenhouse Heating in Polish Climatic Conditions—A Case Study," Sustainability, MDPI, vol. 10(10), pages 1-23, September.
    18. James Bambara & Andreas K. Athienitis & Ursula Eicker, 2021. "Decarbonizing Local Mobility and Greenhouse Agriculture through Residential Building Energy Upgrades: A Case Study for Québec," Energies, MDPI, vol. 14(20), pages 1-31, October.
    19. Bhandari, Ramchandra & Shah, Ronak Rakesh, 2021. "Hydrogen as energy carrier: Techno-economic assessment of decentralized hydrogen production in Germany," Renewable Energy, Elsevier, vol. 177(C), pages 915-931.
    20. Mohsen Fallah Vostakola & Babak Salamatinia & Bahman Amini Horri, 2022. "A Review on Recent Progress in the Integrated Green Hydrogen Production Processes," Energies, MDPI, vol. 15(3), pages 1-41, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcltec:v:3:y:2021:i:4:p:40-684:d:640290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.