Study of Influential Parameters of the Caffeine Extraction from Spent Coffee Grounds: From Brewing Coffee Method to the Waste Treatment Conditions
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Plaza, M.G. & González, A.S. & Pevida, C. & Pis, J.J. & Rubiera, F., 2012. "Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications," Applied Energy, Elsevier, vol. 99(C), pages 272-279.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mirna Brekalo & Blanka Bilić Rajs & Krunoslav Aladić & Lidija Jakobek & Zita Šereš & Saša Krstović & Stela Jokić & Sandra Budžaki & Ivica Strelec, 2023. "Multistep Extraction Transformation of Spent Coffee Grounds to the Cellulose-Based Enzyme Immobilization Carrier," Sustainability, MDPI, vol. 15(17), pages 1-21, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Minkai & Guo, Yincheng, 2013. "Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution," Applied Energy, Elsevier, vol. 111(C), pages 142-152.
- Amira Alazmi & Sabina A. Nicolae & Pierpaolo Modugno & Bashir E. Hasanov & Maria M. Titirici & Pedro M. F. J. Costa, 2021. "Activated Carbon from Palm Date Seeds for CO 2 Capture," IJERPH, MDPI, vol. 18(22), pages 1-11, November.
- Nimmanterdwong, Prathana & Chalermsinsuwan, Benjapon & Piumsomboon, Pornpote, 2017. "Emergy analysis of three alternative carbon dioxide capture processes," Energy, Elsevier, vol. 128(C), pages 101-108.
- Qasem, Naef A.A. & Ben-Mansour, Rached & Habib, Mohamed A., 2018. "An efficient CO2 adsorptive storage using MOF-5 and MOF-177," Applied Energy, Elsevier, vol. 210(C), pages 317-326.
- Huang, Yu-Fong & Chiueh, Pei-Te & Shih, Chun-Hao & Lo, Shang-Lien & Sun, Liping & Zhong, Yuan & Qiu, Chunsheng, 2015. "Microwave pyrolysis of rice straw to produce biochar as an adsorbent for CO2 capture," Energy, Elsevier, vol. 84(C), pages 75-82.
- A. G. Olabi & Tabbi Wilberforce & Enas Taha Sayed & Nabila Shehata & Abdul Hai Alami & Hussein M. Maghrabie & Mohammad Ali Abdelkareem, 2022. "Prospect of Post-Combustion Carbon Capture Technology and Its Impact on the Circular Economy," Energies, MDPI, vol. 15(22), pages 1-38, November.
- Huang, Yu-Fong & Cheng, Pei-Hsin & Chiueh, Pei-Te & Lo, Shang-Lien, 2017. "Leucaena biochar produced by microwave torrefaction: Fuel properties and energy efficiency," Applied Energy, Elsevier, vol. 204(C), pages 1018-1025.
- Guo, Yafei & Zhao, Chuanwen & Li, Changhai & Lu, Shouxiang, 2014. "Application of PEI–K2CO3/AC for capturing CO2 from flue gas after combustion," Applied Energy, Elsevier, vol. 129(C), pages 17-24.
- Dissanayake, Pavani Dulanja & Choi, Seung Wan & Igalavithana, Avanthi Deshani & Yang, Xiao & Tsang, Daniel C.W. & Wang, Chi-Hwa & Kua, Harn Wei & Lee, Ki Bong & Ok, Yong Sik, 2020. "Sustainable gasification biochar as a high efficiency adsorbent for CO2 capture: A facile method to designer biochar fabrication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
- Lachman, Jakub & Lisý, Martin & Baláš, Marek & Matúš, Miloš & Lisá, Hana & Milčák, Pavel, 2022. "Spent coffee grounds and wood co-firing: Fuel preparation, properties, thermal decomposition, and emissions," Renewable Energy, Elsevier, vol. 193(C), pages 464-474.
- Yaumi, A.L. & Bakar, M.Z. Abu & Hameed, B.H., 2018. "Melamine-nitrogenated mesoporous activated carbon derived from rice husk for carbon dioxide adsorption in fixed-bed," Energy, Elsevier, vol. 155(C), pages 46-55.
- Afolabi, Oluwasola O.D. & Sohail, M. & Cheng, Yu-Ling, 2020. "Optimisation and characterisation of hydrochar production from spent coffee grounds by hydrothermal carbonisation," Renewable Energy, Elsevier, vol. 147(P1), pages 1380-1391.
- Su, Fengsheng & Lu, Chungsying & Chung, Ai-Ju & Liao, Chien-Hsiang, 2014. "CO2 capture with amine-loaded carbon nanotubes via a dual-column temperature/vacuum swing adsorption," Applied Energy, Elsevier, vol. 113(C), pages 706-712.
- Fernando Rubiera & Carlos Córdoba & Tamara Pena & Marta G. Plaza, 2024. "Production of Sustainable Adsorbents for CO 2 Capture Applications from Food Biowastes," Energies, MDPI, vol. 17(5), pages 1-20, March.
- Ben-Mansour, R. & Habib, M.A. & Bamidele, O.E. & Basha, M. & Qasem, N.A.A. & Peedikakkal, A. & Laoui, T. & Ali, M., 2016. "Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations – A review," Applied Energy, Elsevier, vol. 161(C), pages 225-255.
- Qasem, Naef A.A. & Ben-Mansour, Rached, 2018. "Energy and productivity efficient vacuum pressure swing adsorption process to separate CO2 from CO2/N2 mixture using Mg-MOF-74: A CFD simulation," Applied Energy, Elsevier, vol. 209(C), pages 190-202.
- Yuan, Xiangzhou & Wang, Junyao & Deng, Shuai & Suvarna, Manu & Wang, Xiaonan & Zhang, Wei & Hamilton, Sara Triana & Alahmed, Ammar & Jamal, Aqil & Park, Ah-Hyung Alissa & Bi, Xiaotao & Ok, Yong Sik, 2022. "Recent advancements in sustainable upcycling of solid waste into porous carbons for carbon dioxide capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
- Nausika Querejeta & M. Victoria Gil & Fernando Rubiera & Covadonga Pevida, 2018. "Sustainable coffee†based CO2 adsorbents: toward a greener production via hydrothermal carbonization," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(2), pages 309-323, April.
- Plaza, M.G. & Durán, I. & Rubiera, F. & Pevida, C., 2015. "CO2 adsorbent pellets produced from pine sawdust: Effect of coal tar pitch addition," Applied Energy, Elsevier, vol. 144(C), pages 182-192.
- R. Maniarasu & Sushil Kumar Rathore & S. Murugan, 2023. "Biomass-based activated carbon for CO2 adsorption–A review," Energy & Environment, , vol. 34(5), pages 1674-1721, August.
More about this item
Keywords
spent coffee grounds; biomass valorization; caffeine; storage conditions; extraction parameters; purification;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcltec:v:3:y:2021:i:2:p:19-350:d:529493. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.