IDEAS home Printed from https://ideas.repec.org/a/gam/jcltec/v3y2021i2p19-350d529493.html
   My bibliography  Save this article

Study of Influential Parameters of the Caffeine Extraction from Spent Coffee Grounds: From Brewing Coffee Method to the Waste Treatment Conditions

Author

Listed:
  • Alexandre Vandeponseele

    (EDYTEM, University Savoie Mont Blanc, CNRS, F-73000 Chambéry, France)

  • Micheline Draye

    (EDYTEM, University Savoie Mont Blanc, CNRS, F-73000 Chambéry, France)

  • Christine Piot

    (EDYTEM, University Savoie Mont Blanc, CNRS, F-73000 Chambéry, France)

  • Gregory Chatel

    (EDYTEM, University Savoie Mont Blanc, CNRS, F-73000 Chambéry, France)

Abstract

This article aims to study the interest of spent coffee grounds (SCG) valorization through caffeine recovery. In an original way, this study takes into account all the parameters such as (i) the brewing coffee methods (household, coffee shops, etc.); (ii) the storage conditions, in particular the drying step; (iii) the solid/liquid extraction parameters such as the nature of solvent, the temperature, the extraction time and the solid/liquid ratio; and (iv) the liquid/liquid purification parameters such as the nature, the volume and the pH of extraction medium. Results have shown that spent coffee grounds from coffee-shops obtained by percolation contain a higher amount of caffeine than spent coffee grounds from households obtained from spent pods or filters. A drying treatment is not required when extraction is performed under one week after the spent coffee grounds collection with 96.4% of not degraded caffeine. Solid/liquid extraction performed with 25 mL.g −1 SCG of hydroalcoholic solvent (water/EtOH, v / v 60/40) at 60 °C during 15 min have given a caffeine yield up to 4.67 mg.g −1 SCG . When using ethyl acetate, 93.4% of the caffeine has been selectively recovered by liquid/liquid extraction. Finally, the extraction of caffeine for the valorization of spent coffee grounds is a promising and easy way, which fits with an already important and well established market.

Suggested Citation

  • Alexandre Vandeponseele & Micheline Draye & Christine Piot & Gregory Chatel, 2021. "Study of Influential Parameters of the Caffeine Extraction from Spent Coffee Grounds: From Brewing Coffee Method to the Waste Treatment Conditions," Clean Technol., MDPI, vol. 3(2), pages 1-16, April.
  • Handle: RePEc:gam:jcltec:v:3:y:2021:i:2:p:19-350:d:529493
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8797/3/2/19/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8797/3/2/19/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Plaza, M.G. & González, A.S. & Pevida, C. & Pis, J.J. & Rubiera, F., 2012. "Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications," Applied Energy, Elsevier, vol. 99(C), pages 272-279.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mirna Brekalo & Blanka Bilić Rajs & Krunoslav Aladić & Lidija Jakobek & Zita Šereš & Saša Krstović & Stela Jokić & Sandra Budžaki & Ivica Strelec, 2023. "Multistep Extraction Transformation of Spent Coffee Grounds to the Cellulose-Based Enzyme Immobilization Carrier," Sustainability, MDPI, vol. 15(17), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Minkai & Guo, Yincheng, 2013. "Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution," Applied Energy, Elsevier, vol. 111(C), pages 142-152.
    2. Qasem, Naef A.A. & Ben-Mansour, Rached & Habib, Mohamed A., 2018. "An efficient CO2 adsorptive storage using MOF-5 and MOF-177," Applied Energy, Elsevier, vol. 210(C), pages 317-326.
    3. Huang, Yu-Fong & Chiueh, Pei-Te & Shih, Chun-Hao & Lo, Shang-Lien & Sun, Liping & Zhong, Yuan & Qiu, Chunsheng, 2015. "Microwave pyrolysis of rice straw to produce biochar as an adsorbent for CO2 capture," Energy, Elsevier, vol. 84(C), pages 75-82.
    4. Huang, Yu-Fong & Cheng, Pei-Hsin & Chiueh, Pei-Te & Lo, Shang-Lien, 2017. "Leucaena biochar produced by microwave torrefaction: Fuel properties and energy efficiency," Applied Energy, Elsevier, vol. 204(C), pages 1018-1025.
    5. Dissanayake, Pavani Dulanja & Choi, Seung Wan & Igalavithana, Avanthi Deshani & Yang, Xiao & Tsang, Daniel C.W. & Wang, Chi-Hwa & Kua, Harn Wei & Lee, Ki Bong & Ok, Yong Sik, 2020. "Sustainable gasification biochar as a high efficiency adsorbent for CO2 capture: A facile method to designer biochar fabrication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    6. Lachman, Jakub & Lisý, Martin & Baláš, Marek & Matúš, Miloš & Lisá, Hana & Milčák, Pavel, 2022. "Spent coffee grounds and wood co-firing: Fuel preparation, properties, thermal decomposition, and emissions," Renewable Energy, Elsevier, vol. 193(C), pages 464-474.
    7. Su, Fengsheng & Lu, Chungsying & Chung, Ai-Ju & Liao, Chien-Hsiang, 2014. "CO2 capture with amine-loaded carbon nanotubes via a dual-column temperature/vacuum swing adsorption," Applied Energy, Elsevier, vol. 113(C), pages 706-712.
    8. Fernando Rubiera & Carlos Córdoba & Tamara Pena & Marta G. Plaza, 2024. "Production of Sustainable Adsorbents for CO 2 Capture Applications from Food Biowastes," Energies, MDPI, vol. 17(5), pages 1-20, March.
    9. Marcelina Sołtysik & Izabela Majchrzak-Kucęba & Dariusz Wawrzyńczak, 2022. "Bio-Waste as a Substitute for the Production of Carbon Dioxide Adsorbents: A Review," Energies, MDPI, vol. 15(19), pages 1-23, September.
    10. Guo, Yafei & Zhao, Chuanwen & Chen, Xiaoping & Li, Changhai, 2015. "CO2 capture and sorbent regeneration performances of some wood ash materials," Applied Energy, Elsevier, vol. 137(C), pages 26-36.
    11. Amira Alazmi & Sabina A. Nicolae & Pierpaolo Modugno & Bashir E. Hasanov & Maria M. Titirici & Pedro M. F. J. Costa, 2021. "Activated Carbon from Palm Date Seeds for CO 2 Capture," IJERPH, MDPI, vol. 18(22), pages 1-11, November.
    12. Nimmanterdwong, Prathana & Chalermsinsuwan, Benjapon & Piumsomboon, Pornpote, 2017. "Emergy analysis of three alternative carbon dioxide capture processes," Energy, Elsevier, vol. 128(C), pages 101-108.
    13. A. G. Olabi & Tabbi Wilberforce & Enas Taha Sayed & Nabila Shehata & Abdul Hai Alami & Hussein M. Maghrabie & Mohammad Ali Abdelkareem, 2022. "Prospect of Post-Combustion Carbon Capture Technology and Its Impact on the Circular Economy," Energies, MDPI, vol. 15(22), pages 1-38, November.
    14. Guo, Yafei & Zhao, Chuanwen & Li, Changhai & Lu, Shouxiang, 2014. "Application of PEI–K2CO3/AC for capturing CO2 from flue gas after combustion," Applied Energy, Elsevier, vol. 129(C), pages 17-24.
    15. Yaumi, A.L. & Bakar, M.Z. Abu & Hameed, B.H., 2018. "Melamine-nitrogenated mesoporous activated carbon derived from rice husk for carbon dioxide adsorption in fixed-bed," Energy, Elsevier, vol. 155(C), pages 46-55.
    16. Afolabi, Oluwasola O.D. & Sohail, M. & Cheng, Yu-Ling, 2020. "Optimisation and characterisation of hydrochar production from spent coffee grounds by hydrothermal carbonisation," Renewable Energy, Elsevier, vol. 147(P1), pages 1380-1391.
    17. Ben-Mansour, R. & Habib, M.A. & Bamidele, O.E. & Basha, M. & Qasem, N.A.A. & Peedikakkal, A. & Laoui, T. & Ali, M., 2016. "Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations – A review," Applied Energy, Elsevier, vol. 161(C), pages 225-255.
    18. Qasem, Naef A.A. & Ben-Mansour, Rached, 2018. "Energy and productivity efficient vacuum pressure swing adsorption process to separate CO2 from CO2/N2 mixture using Mg-MOF-74: A CFD simulation," Applied Energy, Elsevier, vol. 209(C), pages 190-202.
    19. Yuan, Xiangzhou & Wang, Junyao & Deng, Shuai & Suvarna, Manu & Wang, Xiaonan & Zhang, Wei & Hamilton, Sara Triana & Alahmed, Ammar & Jamal, Aqil & Park, Ah-Hyung Alissa & Bi, Xiaotao & Ok, Yong Sik, 2022. "Recent advancements in sustainable upcycling of solid waste into porous carbons for carbon dioxide capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    20. Nausika Querejeta & M. Victoria Gil & Fernando Rubiera & Covadonga Pevida, 2018. "Sustainable coffee†based CO2 adsorbents: toward a greener production via hydrothermal carbonization," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(2), pages 309-323, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcltec:v:3:y:2021:i:2:p:19-350:d:529493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.