IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i8p865-d1635608.html
   My bibliography  Save this article

Influence of Biochar Organic Carbon Composition and Thermal Stability on Nitrate Retention and Tomato Yield on Soilless Biochar Amended Growth Media

Author

Listed:
  • George K. Osei

    (School of Environment, Florida Agricultural & Mechanical University, Tallahassee, FL 32307, USA
    Environmental Health & Safety, University of North Texas Health Science Center, Fort Worth, TX 76107, USA)

  • Lucy W. Ngatia

    (College of Agriculture and Food Sciences, Florida Agricultural & Mechanical University, Tallahassee, FL 32307, USA)

  • Michael D. Abazinge

    (School of Environment, Florida Agricultural & Mechanical University, Tallahassee, FL 32307, USA)

  • Alejandro Bolques

    (School of Environment, Florida Agricultural & Mechanical University, Tallahassee, FL 32307, USA)

  • Charles Jagoe

    (School of Environment, Florida Agricultural & Mechanical University, Tallahassee, FL 32307, USA)

  • Marcia A. Owens

    (School of Environment, Florida Agricultural & Mechanical University, Tallahassee, FL 32307, USA)

  • Benjamin Mwashote

    (School of Environment, Florida Agricultural & Mechanical University, Tallahassee, FL 32307, USA)

  • Riqiang Fu

    (National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310, USA)

Abstract

The application of biochar to traditional soil and soilless growth media in agriculture has been reported to increase plant production. However, it remains unclear which biochar component drives this process or which biogeochemical process is attributed to better plant productivity. Therefore, this study aims to determine how biochar organic carbon (C) composition and thermal stability influence nitrogen availability and tomato production. Soilless growth media composed of a mixture of 60% and 40% coconut coir (CC) ( Cocos nucifera L.) and fine pine bark (PB) ( Pinus genus ), respectively, was amended with 0, 1, 2, 3, 4, 6, 8, 10, and 12% biochar per dry weight. The amended media were used to grow Red Bounty tomatoes ( Lycopersicum esculentum ) for three months. After harvesting tomatoes and determining yield, organic C composition and C thermal stability of the biochar amended soilless growth media mixtures were determined using solid-state 13 C nuclear magnetic resonance ( 13 C NMR) and multi-elemental scanning thermal analysis (MESTA), respectively. Thermal stability data were used to determine the “R400 index”, and nitrate (NO 3 − ) concentration was determined using the water extractable method. Results showed that biochar-amended media significantly increased pH ( p < 0.0001) and NO 3 − ( p = 0.0386) compared to the no-char control. Biochar amended soilless media organic C composition was dominated by O-alkyl-C as a result of a higher fraction of soilless media; however, total C, carboxyl-C, phenolic-C, and aromatic-C increased with increasing biochar content and related negatively to R400, which decreased with increasing biochar content. Nitrate retention and tomato yield increased with increasing total C, carboxyl-C, phenolic-C, and aromatic-C and decreasing R400. This indicates that the stable form of C, carboxyl-C, phenolic-C, aromatic-C, and low R400 enhanced NO 3 − sorption, reducing leaching and enhancing its availability for tomato growth.

Suggested Citation

  • George K. Osei & Lucy W. Ngatia & Michael D. Abazinge & Alejandro Bolques & Charles Jagoe & Marcia A. Owens & Benjamin Mwashote & Riqiang Fu, 2025. "Influence of Biochar Organic Carbon Composition and Thermal Stability on Nitrate Retention and Tomato Yield on Soilless Biochar Amended Growth Media," Agriculture, MDPI, vol. 15(8), pages 1-18, April.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:8:p:865-:d:1635608
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/8/865/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/8/865/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paul J. A. Withers & Colin Neal & Helen P. Jarvie & Donnacha G. Doody, 2014. "Agriculture and Eutrophication: Where Do We Go from Here?," Sustainability, MDPI, vol. 6(9), pages 1-23, September.
    2. Al-Rumaihi, Aisha & Shahbaz, Muhammad & Mckay, Gordon & Mackey, Hamish & Al-Ansari, Tareq, 2022. "A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nawaz, Ahmad & Razzak, Shaikh Abdur, 2024. "Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects," Renewable Energy, Elsevier, vol. 224(C).
    2. Alessandro Abbà & Marta Domini & Marco Baldi & Roberta Pedrazzani & Giorgio Bertanza, 2023. "Ammonia Recovery from Livestock Manure Digestate through an Air-Bubble Stripping Reactor: Evaluation of Performance and Energy Balance," Energies, MDPI, vol. 16(4), pages 1-15, February.
    3. Laima Česonienė & Daiva Šileikienė & Vitas Marozas & Laura Čiteikė, 2021. "Influence of Anthropogenic Loads on Surface Water Status: A Case Study in Lithuania," Sustainability, MDPI, vol. 13(8), pages 1-15, April.
    4. Priyanka & Isobel E. Wood & Amthal Al-Gailani & Ben W. Kolosz & Kin Wai Cheah & Devika Vashisht & Surinder K. Mehta & Martin J. Taylor, 2024. "Cleaning Up Metal Contamination after Decades of Energy Production and Manufacturing: Reviewing the Value in Use of Biochars for a Sustainable Future," Sustainability, MDPI, vol. 16(20), pages 1-44, October.
    5. Shuai Zhang & Haibo Hu & Xiangdong Jia & Xia Wang & Jianyu Chen & Can Cheng & Xichuan Jia & Zhaoming Wu & Li Zhu, 2022. "How Biochar Derived from Pond Cypress ( Taxodium Ascendens ) Evolved with Pyrolysis Temperature and Time and Their End Efficacy Evaluation," IJERPH, MDPI, vol. 19(18), pages 1-16, September.
    6. Juan Matthews & William Bodel & Gregg Butler, 2024. "Nuclear Cogeneration to Support a Net-Zero, High-Renewable Electricity Grid," Energies, MDPI, vol. 17(24), pages 1-38, December.
    7. Luo, Juan & Ma, Rui & Lin, Junhao & Sun, Shichang & Gong, Guojin & Sun, Jiaman & Chen, Yi & Ma, Ning, 2023. "Review of microwave pyrolysis of sludge to produce high quality biogas: Multi-perspectives process optimization and critical issues proposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    8. Matteo Prussi, 2024. "Applying the International Maritime Organisation Life Cycle Assessment Guidelines to Pyrolysis Oil-Derived Blends: A Sustainable Option for Marine Fuels," Energies, MDPI, vol. 17(21), pages 1-17, October.
    9. Kofi Armah Boakye-Yiadom & Alessio Ilari & Valentina Bisinella & Ester Foppa Pedretti & Daniele Duca, 2023. "Environmental Impact Assessment of Frozen Peas Production from Conventional and Organic Farming in Italy," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    10. Li, Jishuo & Wang, Tie & Hao, Tengteng & Yao, Xiwen & Xu, Kaili & Liu, Jia, 2025. "Application of biochar catalysts in tar catalytic reforming: A review on preparation, modification, deactivation, and regeneration," Energy, Elsevier, vol. 317(C).
    11. Chen, He & Wang, Jiaxing & Rocha, Luiz AO. & Zhang, Houlei & Zhang, Shuping & Zhang, Huiyan, 2024. "Insights into the char-production mechanism during co-pyrolysis of biomass and plastic wastes," Energy, Elsevier, vol. 312(C).
    12. Harjinder Kaur & Raghava R Kommalapati, 2021. "Biochemical Methane Potential and Kinetic Parameters of Goat Manure at Various Inoculum to Substrate Ratios," Sustainability, MDPI, vol. 13(22), pages 1-10, November.
    13. Derick Lima & Li Li & Gregory Appleby, 2024. "A Review of Renewable Energy Technologies in Municipal Wastewater Treatment Plants (WWTPs)," Energies, MDPI, vol. 17(23), pages 1-52, December.
    14. Mousavi-Avval, Seyed Hashem & Sahoo, Kamalakanta & Nepal, Prakash & Runge, Troy & Bergman, Richard, 2023. "Environmental impacts and techno-economic assessments of biobased products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    15. Marlena Gołaś & Piotr Sulewski & Adam Wąs & Anna Kłoczko-Gajewska & Kinga Pogodzińska, 2020. "On the Way to Sustainable Agriculture—Eco-Efficiency of Polish Commercial Farms," Agriculture, MDPI, vol. 10(10), pages 1-24, September.
    16. Diego C. B. D. Santos & Rafael B. W. Evaristo & Romulo C. Dutra & Paulo A. Z. Suarez & Edgar A. Silveira & Grace F. Ghesti, 2025. "Advancing Biochar Applications: A Review of Production Processes, Analytical Methods, Decision Criteria, and Pathways for Scalability and Certification," Sustainability, MDPI, vol. 17(6), pages 1-42, March.
    17. Hamed, A.S.A. & Yusof, N.I.F.M. & Yahya, M.S. & Cardozo, E. & Munajat, N.F., 2023. "Concentrated solar pyrolysis for oil palm biomass: An exploratory review within the Malaysian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    18. Divine Senanu Ametefe & George Dzorgbenya Ametefe & Dah John & Abdulmalik Adozuka Aliu & Macaulay M. Owen & Solehuddin Shuib & Aisha Hamid, 2025. "Energy Generation from Plastic Composites: A Systematic Review of Sustainable Practices and Technologies," Circular Economy and Sustainability, Springer, vol. 5(2), pages 1307-1343, April.
    19. Zhou, Chunbao & Chen, Yuanxiang & Xing, Xuyang & Chen, Lei & Liu, Chenglong & Chao, Li & Yao, Bang & Zhang, Yingwen & Dai, Jianjun & Liu, Yang & Wang, Jun & Dong, Jie & Li, Yunxiang & Fan, Dekai & Wan, 2024. "Pilot-scale pyrolysis and activation of typical biomass chips in an interconnected dual fluidized bed: Comparison and analysis of products," Renewable Energy, Elsevier, vol. 225(C).
    20. Leushantha Mudaly & Michael van der Laan, 2020. "Interactions between Irrigated Agriculture and Surface Water Quality with a Focus on Phosphate and Nitrate in the Middle Olifants Catchment, South Africa," Sustainability, MDPI, vol. 12(11), pages 1-25, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:8:p:865-:d:1635608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.