IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i7p703-d1621019.html
   My bibliography  Save this article

Multi Standardized Precipitation Evapotranspiration Index (Multi-SPEI-ETo): Evaluation of 40 Empirical Methods and Their Influence in SPEI

Author

Listed:
  • Tariacuri Marquez-Alvarez

    (Faculty of Civil Engineering, Michoacan University of Saint Nicolas of Hidalgo, Morelia 58030, Mexico)

  • Joel Hernandez Bedolla

    (Faculty of Civil Engineering, Michoacan University of Saint Nicolas of Hidalgo, Morelia 58030, Mexico)

  • Jesus Pardo-Loaiza

    (Faculty of Civil Engineering, Michoacan University of Saint Nicolas of Hidalgo, Morelia 58030, Mexico)

  • Benjamín Lara-Ledesma

    (Faculty of Civil Engineering, Michoacan University of Saint Nicolas of Hidalgo, Morelia 58030, Mexico)

  • Constantino Domínguez-Sánchez

    (Faculty of Civil Engineering, Michoacan University of Saint Nicolas of Hidalgo, Morelia 58030, Mexico)

Abstract

Reference evapotranspiration (ETo) refers to the combined processes of evaporation and transpiration, which are relevant for hydrology, climate change research, and irrigation system design. The ETo is considered for different climatological studies, agriculture-focused studies, drought indices and climate change as well. From the ETo, water needs can be obtained, and along with precipitation, it is important to determine water availability and drought indices like the Standardized Precipitation Evapotranspiration Index (SPEI). Currently, there are different methods to estimate the ETo based on various climatic variables, which have been proposed for different climates and applied in different regions worldwide. The method standardized by most studies for determining the ETo is the “modified Penman–Monteith” method by the Food and Agriculture Organization (FAO). This method is versatile as it considers different climatic conditions and global latitudes. Due to limited climate data in developing countries like Mexico, alternative methods are used. The present study analyzed 40 comparative methods for determining ETo and their influence on SPEI. The best methods for the study area were chosen, including Hansen, Hargreaves and Samani, and Trajkovic, as they are the best based on the available information in Mexico. Additionally, each equation was adjusted to reduce errors and achieve closer approximations to actual ETo values to obtain the most accurate values possible. The influence on SPEI calculation indicates overestimations in temperature-based methods and underestimations in radiation and mass-transfer-based methods. The SPEI calculation showed fewer errors when using the modified HANSEN equations. In the absence of information, Allen’s temperature-based method is recommended.

Suggested Citation

  • Tariacuri Marquez-Alvarez & Joel Hernandez Bedolla & Jesus Pardo-Loaiza & Benjamín Lara-Ledesma & Constantino Domínguez-Sánchez, 2025. "Multi Standardized Precipitation Evapotranspiration Index (Multi-SPEI-ETo): Evaluation of 40 Empirical Methods and Their Influence in SPEI," Agriculture, MDPI, vol. 15(7), pages 1-29, March.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:7:p:703-:d:1621019
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/7/703/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/7/703/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rohwer, Carl, 1931. "Evaporation from Free Water Surfaces," Technical Bulletins 163103, United States Department of Agriculture, Economic Research Service.
    2. Helge Bormann, 2011. "Sensitivity analysis of 18 different potential evapotranspiration models to observed climatic change at German climate stations," Climatic Change, Springer, vol. 104(3), pages 729-753, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiang, Keyu & Li, Yi & Horton, Robert & Feng, Hao, 2020. "Similarity and difference of potential evapotranspiration and reference crop evapotranspiration – a review," Agricultural Water Management, Elsevier, vol. 232(C).
    2. Muniandy, Josilva M. & Yusop, Zulkifli & Askari, Muhamad, 2016. "Evaluation of reference evapotranspiration models and determination of crop coefficient for Momordica charantia and Capsicum annuum," Agricultural Water Management, Elsevier, vol. 169(C), pages 77-89.
    3. Ruperto Ortiz-Gómez & Roberto S. Flowers-Cano & Guillermo Medina-García, 2022. "Sensitivity of the RDI and SPEI Drought Indices to Different Models for Estimating Evapotranspiration Potential in Semiarid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2471-2492, May.
    4. Mohammad Valipour, 2014. "Use of average data of 181 synoptic stations for estimation of reference crop evapotranspiration by temperature-based methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4237-4255, September.
    5. Mohd Khairul Idlan Muhammad & Mohamed Salem Nashwan & Shamsuddin Shahid & Tarmizi bin Ismail & Young Hoon Song & Eun-Sung Chung, 2019. "Evaluation of Empirical Reference Evapotranspiration Models Using Compromise Programming: A Case Study of Peninsular Malaysia," Sustainability, MDPI, vol. 11(16), pages 1-19, August.
    6. C. Harris & A. Quinn & J. Bridgeman, 2013. "Quantification of uncertainty sources in a probabilistic climate change assessment of future water shortages," Climatic Change, Springer, vol. 121(2), pages 317-329, November.
    7. Peddinti, Srinivasa Rao & Kambhammettu, BVN P, 2019. "Dynamics of crop coefficients for citrus orchards of central India using water balance and eddy covariance flux partition techniques," Agricultural Water Management, Elsevier, vol. 212(C), pages 68-77.
    8. Vishwakarma, Dinesh Kumar & Pandey, Kusum & Kaur, Arshdeep & Kushwaha, N.L. & Kumar, Rohitashw & Ali, Rawshan & Elbeltagi, Ahmed & Kuriqi, Alban, 2022. "Methods to estimate evapotranspiration in humid and subtropical climate conditions," Agricultural Water Management, Elsevier, vol. 261(C).
    9. Jitendra Rajput & Man Singh & Khajanchi Lal & Manoj Khanna & Arjamadutta Sarangi & Joydeep Mukherjee & Shrawan Singh, 2024. "Selection of alternate reference evapotranspiration models based on multi-criteria decision ranking for semiarid climate," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(5), pages 11171-11216, May.
    10. C.-Y. Xu & V. Singh, 2002. "Cross Comparison of Empirical Equations for Calculating Potential Evapotranspiration with Data from Switzerland," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 16(3), pages 197-219, June.
    11. Zhao, J. & Bilbao, J.I. & Spooner, E.D. & Sproul, A.B., 2018. "Experimental study of a solar pool heating system under lower flow and low pump speed conditions," Renewable Energy, Elsevier, vol. 119(C), pages 320-335.
    12. Xinqin Gu & Li Yao & Lifeng Wu, 2023. "Prediction of Water Carbon Fluxes and Emission Causes in Rice Paddies Using Two Tree-Based Ensemble Algorithms," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    13. Dong, Juan & Xing, Liwen & Cui, Ningbo & Guo, Li & Liang, Chuan & Zhao, Lu & Wang, Zhihui & Gong, Daozhi, 2024. "Estimating reference crop evapotranspiration using optimized empirical methods with a novel improved Grey Wolf Algorithm in four climatic regions of China," Agricultural Water Management, Elsevier, vol. 291(C).
    14. Clara Hohmann & Gottfried Kirchengast & Steffen Birk, 2018. "Alpine foreland running drier? Sensitivity of a drought vulnerable catchment to changes in climate, land use, and water management," Climatic Change, Springer, vol. 147(1), pages 179-193, March.
    15. Yang, Yong & Chen, Rensheng & Han, Chuntan & Liu, Zhangwen, 2021. "Evaluation of 18 models for calculating potential evapotranspiration in different climatic zones of China," Agricultural Water Management, Elsevier, vol. 244(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:7:p:703-:d:1621019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.