Author
Listed:
- Elia Pacioni
(Centro Universitario de Mérida, Universidad de Extremadura, Avda. Santa Teresa de Jornet, 38, 06800 Mérida, Spain
HES-SO Valais/Wallis, 3960 Sierre, Switzerland)
- Eugenio Abengózar
(Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas, s/n, 06006 Badajoz, Spain)
- Miguel Macías Macías
(Centro Universitario de Mérida, Universidad de Extremadura, Avda. Santa Teresa de Jornet, 38, 06800 Mérida, Spain
Instituto de Computación Científica Avanzada, Av. de la Investigación, s/n, 06006 Badajoz, Spain)
- Carlos J. García-Orellana
(Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas, s/n, 06006 Badajoz, Spain
Instituto de Computación Científica Avanzada, Av. de la Investigación, s/n, 06006 Badajoz, Spain)
- Ramón Gallardo
(Instituto de Computación Científica Avanzada, Av. de la Investigación, s/n, 06006 Badajoz, Spain
Escuela Politécnica, Universidad de Extremadura, Avda. Universidad s/n, 10003 Cáceres, Spain)
- Horacio M. González Velasco
(Instituto de Computación Científica Avanzada, Av. de la Investigación, s/n, 06006 Badajoz, Spain
Escuela Politécnica, Universidad de Extremadura, Avda. Universidad s/n, 10003 Cáceres, Spain)
Abstract
The development of robots for automatic pruning of vineyards using deep learning techniques seems feasible in the medium term. In this context, it is essential to propose and study solutions that can be deployed on portable hardware, with artificial intelligence capabilities but reduced computing power. In this paper, we propose a novel approach to vineyard pruning by direct detection of cutting areas in real time by comparing Mask R-CNN and YOLOv8 performances. The studied object segmentation architectures are able to segment the image by locating the trunk, and pruned and not pruned vine shoots. Our study analyzes the performance of both frameworks in terms of segmentation efficiency and inference times on a Jetson AGX Orin GPU. To compare segmentation efficiency, we used the mAP50 and AP50 per category metrics. Our results show that YOLOv8 is superior both in segmentation efficiency and inference time. Specifically, YOLOv8-S exhibits the best tradeoff between efficiency and inference time, showing an mAP50 of 0.883 and an AP50 of 0.748 for the shoot class, with an inference time of around 55 ms on a Jetson AGX Orin.
Suggested Citation
Elia Pacioni & Eugenio Abengózar & Miguel Macías Macías & Carlos J. García-Orellana & Ramón Gallardo & Horacio M. González Velasco, 2025.
"Towards Intelligent Pruning of Vineyards by Direct Detection of Cutting Areas,"
Agriculture, MDPI, vol. 15(11), pages 1-15, May.
Handle:
RePEc:gam:jagris:v:15:y:2025:i:11:p:1154-:d:1665850
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:11:p:1154-:d:1665850. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.