IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i6p956-d1417294.html
   My bibliography  Save this article

Effect of Split Basal Fertilisation and Top-Dressing on Relative Chlorophyll Content and Yield of Maize Hybrids

Author

Listed:
  • Péter Zagyi

    (Institute of Land Use, Engineering and Precision Farming Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, H-4032 Debrecen, Hungary)

  • Éva Horváth

    (Institute of Land Use, Engineering and Precision Farming Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, H-4032 Debrecen, Hungary)

  • Gyula Vasvári

    (Institute of Land Use, Engineering and Precision Farming Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, H-4032 Debrecen, Hungary)

  • Károly Simon

    (Institute of Land Use, Engineering and Precision Farming Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, H-4032 Debrecen, Hungary)

  • Adrienn Széles

    (Institute of Land Use, Engineering and Precision Farming Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, H-4032 Debrecen, Hungary)

Abstract

The aim of this study was to determine the nitrogen requirement of maize, the optimal timing and amount of nutrient application, based on long time series data. An additional objective was to examine the response of the relative chlorophyll content of maize to nitrogen fertilisation. The examinations were carried out in a long-term field experiment at the University of Debrecen between 2016 and 2022, using two maize hybrids with different genotypes. Spatial and temporal changes in the N status of maize leaves were monitored using the Soil and Plant Analysis Development (SPAD) instrument. In addition to the non-fertilised (A 0 ) treatment, six fertiliser treatments were applied (spring basal fertilisation: 60 and 120 kg N ha −1 , A 60 ; A 120 ). Basal fertilisation was followed by two occasions of top-dressing at phenological stages V6 and V12, at rates of +30–30 kg N ha −1 (V6 90 and V6 150 , and V12 120 and V12 180 ). The CMR (Chlorophyll Meter Reading), averaged over the examined years, genotypes and fertiliser treatments, were lowest in the V6 phenological phase (40.23 ± 5.57, p < 0.05) and highest in R1 (49.91 ± 8.41, p < 0.05). A 120 fertiliser treatment increased the relative chlorophyll content by 5.11 compared to the non-fertilised treatment, 1.67 more than A60 treatment. The basal fertilisation treatment substantially increased the yield (A 60 : +30.75%; A 120 : +66.68%) compared to the A 0 treatment averaged over years and genotypes. Based on the obtained research results, a basal treatment of 120 kg N ha −1 is recommended and it can be concluded that, under appropriate water supply conditions (rainfall, irrigation), nitrogen top-dressing applied in V6 phenophase results in a significant yield increase compared to basal fertilisation.

Suggested Citation

  • Péter Zagyi & Éva Horváth & Gyula Vasvári & Károly Simon & Adrienn Széles, 2024. "Effect of Split Basal Fertilisation and Top-Dressing on Relative Chlorophyll Content and Yield of Maize Hybrids," Agriculture, MDPI, vol. 14(6), pages 1-16, June.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:6:p:956-:d:1417294
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/6/956/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/6/956/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olaf Erenstein & Moti Jaleta & Kai Sonder & Khondoker Mottaleb & B.M. Prasanna, 2022. "Global maize production, consumption and trade: trends and R&D implications," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(5), pages 1295-1319, October.
    2. Muschietti-Piana, Maria del Pilar & Cipriotti, Pablo Ariel & Urricariet, Susana & Peralta, Nahuel Raul & Niborski, Mauricio, 2018. "Using site-specific nitrogen management in rainfed corn to reduce the risk of nitrate leaching," Agricultural Water Management, Elsevier, vol. 199(C), pages 61-70.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Tingrui & Zhao, Jinghua & Hong, Ming & Ma, Mingjie, 2024. "Appropriate water and nitrogen supply regulates the dynamics of nitrogen translocation and thereby enhancing the accumulation of nitrogen in maize grains," Agricultural Water Management, Elsevier, vol. 306(C).
    2. Ponieman, Karen D. & Bongiovanni, Rodolfo & Battaglia, Martin L. & Hilbert, Jorge A. & Cipriotti, Pablo A. & Espósito, Gabriel, 2023. "Site-specific calculation of corn bioethanol carbon footprint with Life Cycle Assessment," Agri-Tech Economics Papers 344397, Harper Adams University, Land, Farm & Agribusiness Management Department.
    3. Ponieman, Karen D. & Bongiovanni, Rodolfo & Battaglia, Martin L. & Hilbert, Jorge A. & Cipriotti, Pablo A. & Espósito, Gabriel, 2023. "Site-specific calculation of corn bioethanol carbon footprint with Life Cycle Assessment," Land, Farm & Agribusiness Management Department 344397, Harper Adams University, Land, Farm & Agribusiness Management Department.
    4. José Augusto Correa Martins & Alberto Yoshiriki Hisano Higuti & Aiesca Oliveira Pellegrin & Raquel Soares Juliano & Adriana Mello de Araújo & Luiz Alberto Pellegrin & Veraldo Liesenberg & Ana Paula Ma, 2024. "Assessment of UAV-Based Deep Learning for Corn Crop Analysis in Midwest Brazil," Agriculture, MDPI, vol. 14(11), pages 1-15, November.
    5. Chengkai Yang & Jingkai Lei & Zhihao Liu & Shufeng Xiong & Lei Xi & Jian Wang & Hongbo Qiao & Lei Shi, 2025. "Estimation Model of Corn Leaf Area Index Based on Improved CNN," Agriculture, MDPI, vol. 15(5), pages 1-20, February.
    6. Lekarkar, Katoria & Nkwasa, Albert & Villani, Lorenzo & van Griensven, Ann, 2024. "Localizing agricultural impacts of 21st century climate pathways in data scarce catchments: A case study of the Nyando catchment, Kenya," Agricultural Water Management, Elsevier, vol. 294(C).
    7. Buttinelli, Rebecca & Cortignani, Raffaele & Caracciolo, Francesco, 2024. "Irrigation water economic value and productivity: An econometric estimation for maize grain production in Italy," Agricultural Water Management, Elsevier, vol. 295(C).
    8. Sandro Steinbach & Xiting Zhuang, 2025. "US agricultural exports and the 2022 Mississippi River drought," Agribusiness, John Wiley & Sons, Ltd., vol. 41(1), pages 289-303, January.
    9. Deepak Kumar Nepali & Keshav Lall Maharjan, 2025. "Assessing the Impact of Hermetic Storage Technology on Storage Quantity and Post-Harvest Storage Losses Among Smallholding Maize Farmers in Nepal," Agriculture, MDPI, vol. 15(2), pages 1-22, January.
    10. Qiu, Bingwen & Jian, Zeyu & Yang, Peng & Tang, Zhenghong & Zhu, Xiaolin & Duan, Mingjie & Yu, Qiangyi & Chen, Xuehong & Zhang, Miao & Tu, Ping & Xu, Weiming & Zhao, Zhiyuan, 2024. "Unveiling grain production patterns in China (2005–2020) towards targeted sustainable intensification," Agricultural Systems, Elsevier, vol. 216(C).
    11. Huang, Na & Lin, Xiaomao & Lun, Fei & Zeng, Ruiyun & Sassenrath, Gretchen F. & Pan, Zhihua, 2024. "Nitrogen fertilizer use and climate interactions: Implications for maize yields in Kansas," Agricultural Systems, Elsevier, vol. 220(C).
    12. Meng Wang & Haiming Duan & Cheng Zhou & Li Yu & Xiangtao Meng & Wenjie Lu & Haibing Yu, 2024. "Synergistic Effects of Chemical Fungicides with Crude Extracts from Bacillus amyloliquefaciens to Control Northern Corn Leaf Blight," Agriculture, MDPI, vol. 14(4), pages 1-16, April.
    13. Raluca A. Mihai & Ramiro Fernando Vivanco Gonzaga & Damián O. Calero Rondal & Dámaris A. Teneda Jijón & Nelson Santiago Cubi Insuaste & Christian D. Borja Tacuri & Rodica D. Catana, 2025. "Comparative Phytochemical and Biological Profiling of Zea mays L. Varieties in Cotopaxi Region," Agriculture, MDPI, vol. 15(10), pages 1-13, May.
    14. Rafał Januszkiewicz & Grzegorz Kulczycki & Mateusz Samoraj, 2023. "Foliar Fertilization of Crop Plants in Polish Agriculture," Agriculture, MDPI, vol. 13(9), pages 1-14, August.
    15. András Bence Szerb & Arnold Csonka & Imre Fertő, 2022. "Regional trade agreements, globalization, and global maize exports," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 68(10), pages 371-379.
    16. Pan, An & Cao, Xuekang, 2024. "Pilot free trade zones and low-carbon innovation: Evidence from listed companies in China," Energy Economics, Elsevier, vol. 136(C).
    17. Qu, Ziren & Luo, Ning & Guo, Jiameng & Xu, Jie & Wang, Pu & Meng, Qingfeng, 2024. "Enhancing sustainability in the new variety-based low emergy system for maize production by nitrogen optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    18. José Luis Villalpando-Aguilar & Daniel Francisco Chi-Maas & Itzel López-Rosas & Victor Ángel Aquino-Luna & Jesús Arreola-Enríquez & Julia Cristel Alcudia-Pérez & Gilberto Matos-Pech & Roberto Carlos G, 2022. "Urban Agriculture as an Alternative for the Sustainable Production of Maize and Peanut," Agriculture, MDPI, vol. 13(1), pages 1-13, December.
    19. Gao, Jia & Liu, Ninggang & Wang, Xianqi & Niu, Zuoyuan & Liao, Qi & Ding, Risheng & Du, Taisheng & Kang, Shaozhong & Tong, Ling, 2024. "Maintaining grain number by reducing grain abortion is the key to improve water use efficiency of maize under deficit irrigation and salt stress," Agricultural Water Management, Elsevier, vol. 294(C).
    20. Chen, Shichao & Du, Taisheng & Wang, Sufen & Parsons, David & Wu, Di & Guo, Xiuwei & Li, Donghao, 2021. "Quantifying the effects of spatial-temporal variability of soil properties on crop growth in management zones within an irrigated maize field in Northwest China," Agricultural Water Management, Elsevier, vol. 244(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:6:p:956-:d:1417294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.