IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i6p1210-d1165794.html
   My bibliography  Save this article

Carbon Footprint of an Orchard Tractor through a Life-Cycle Assessment Approach

Author

Listed:
  • Salvatore Martelli

    (Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy)

  • Francesco Mocera

    (Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy)

  • Aurelio Somà

    (Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy)

Abstract

The effects of climate change are reaching a point of no return. The necessity to reduce greenhouse gasses (GHGs) is currently notorious on several levels: academic, industrial, and political. The Paris Climate Agreement set a clear roadmap to limit pollutant emissions and reach carbon neutrality. Consequently, everything related to product life cycles, considering the entire supply chain, needs to be analyzed and reconsidered. The agricultural sector is no exception: indeed, it is responsible for 11% of global anthropogenic GHG emissions. Agri-construction sector accounts for 20–30% of all GHG emissions referred to the agricultural field. This study aimed to evaluate the GHG emissions of an orchard-specialized tractor operating in Europe considering a service life of ten years. The assessment was conducted through the life-cycle assessment (LCA) standardized methodology, combining secondary data, primary data, and a software database ( Open LCA (v 1.10.3) software, Environmental Footprint (v 4) database). First, the functional unit, and the boundaries of the analysis are defined. Then, the tractor life cycle is analyzed considering its three main stages: manufacture, use, and disposal. Lastly, the results are discussed according to gate-to-gate and cradle-to-gate approaches. What emerged from the assessment was the production of 5.75 kg CO 2eq . · kg vehicle −1 · year −1 for a single orchard specialized tractor and the predominance of use phase emissions (around 90% of the total).

Suggested Citation

  • Salvatore Martelli & Francesco Mocera & Aurelio Somà, 2023. "Carbon Footprint of an Orchard Tractor through a Life-Cycle Assessment Approach," Agriculture, MDPI, vol. 13(6), pages 1-22, June.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:6:p:1210-:d:1165794
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/6/1210/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/6/1210/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Van linden, Veerle & Herman, Lieve, 2014. "A fuel consumption model for off-road use of mobile machinery in agriculture," Energy, Elsevier, vol. 77(C), pages 880-889.
    2. Francesco Mocera & Aurelio Somà, 2020. "Analysis of a Parallel Hybrid Electric Tractor for Agricultural Applications," Energies, MDPI, vol. 13(12), pages 1-16, June.
    3. Mohammad Naji Nassajfar & Ivan Deviatkin & Ville Leminen & Mika Horttanainen, 2021. "Alternative Materials for Printed Circuit Board Production: An Environmental Perspective," Sustainability, MDPI, vol. 13(21), pages 1-13, November.
    4. Dimitrios P. Platis & Christos D. Anagnostopoulos & Aggeliki D. Tsaboula & Georgios C. Menexes & Kiriaki L. Kalburtji & Andreas P. Mamolos, 2019. "Energy Analysis, and Carbon and Water Footprint for Environmentally Friendly Farming Practices in Agroecosystems and Agroforestry," Sustainability, MDPI, vol. 11(6), pages 1-11, March.
    5. Fernando Enzo Kenta Sato & Toshihiko Nakata, 2020. "Energy Consumption Analysis for Vehicle Production through a Material Flow Approach," Energies, MDPI, vol. 13(9), pages 1-18, May.
    6. Wang, Jason X. & Burke, Haydn & Zhang, Abraham, 2022. "Overcoming barriers to circular product design," International Journal of Production Economics, Elsevier, vol. 243(C).
    7. Piotr Gołasa & Marcin Wysokiński & Wioletta Bieńkowska-Gołasa & Piotr Gradziuk & Magdalena Golonko & Barbara Gradziuk & Agnieszka Siedlecka & Arkadiusz Gromada, 2021. "Sources of Greenhouse Gas Emissions in Agriculture, with Particular Emphasis on Emissions from Energy Used," Energies, MDPI, vol. 14(13), pages 1-20, June.
    8. Francesco Mocera & Valerio Martini & Aurelio Somà, 2022. "Comparative Analysis of Hybrid Electric Architectures for Specialized Agricultural Tractors," Energies, MDPI, vol. 15(5), pages 1-22, March.
    9. Corti, Andrea & Lombardi, Lidia, 2004. "End life tyres: Alternative final disposal processes compared by LCA," Energy, Elsevier, vol. 29(12), pages 2089-2108.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Mocera & Aurelio Somà & Salvatore Martelli & Valerio Martini, 2023. "Trends and Future Perspective of Electrification in Agricultural Tractor-Implement Applications," Energies, MDPI, vol. 16(18), pages 1-36, September.
    2. Valerio Martini & Francesco Mocera & Aurelio Somà, 2022. "Numerical Investigation of a Fuel Cell-Powered Agricultural Tractor," Energies, MDPI, vol. 15(23), pages 1-19, November.
    3. Francesco Mocera & Valerio Martini & Aurelio Somà, 2022. "Comparative Analysis of Hybrid Electric Architectures for Specialized Agricultural Tractors," Energies, MDPI, vol. 15(5), pages 1-22, March.
    4. Ugnė Koletė Medževeprytė & Rolandas Makaras & Vaidas Lukoševičius & Sigitas Kilikevičius, 2023. "Application and Efficiency of a Series-Hybrid Drive for Agricultural Use Based on a Modified Version of the World Harmonized Transient Cycle," Energies, MDPI, vol. 16(14), pages 1-16, July.
    5. Aryal, Jeetendra P., 2022. "Contribution of Agriculture to Climate Change and Low-Emission Agricultural Development in Asia and the Pacific," ADBI Working Papers 1340, Asian Development Bank Institute.
    6. Yi Du & Jiayan Zhou & Zhuofan He & Yandong Sun & Ming Kong, 2022. "A Dual-Harmonic Pole-Changing Motor with Split Permanent Magnet Pole," Energies, MDPI, vol. 15(20), pages 1-14, October.
    7. Antoniou, N. & Stavropoulos, G. & Zabaniotou, A., 2014. "Activation of end of life tyres pyrolytic char for enhancing viability of pyrolysis – Critical review, analysis and recommendations for a hybrid dual system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1053-1073.
    8. Hegazy, Omar & Barrero, Ricardo & Van den Bossche, Peter & El Baghdadi, Mohamed & Smekens, Jelle & Van Mierlo, Joeri & Vriens, Wouter & Bogaerts, Bruno, 2016. "Modeling, analysis and feasibility study of new drivetrain architectures for off-highway vehicles," Energy, Elsevier, vol. 109(C), pages 1056-1074.
    9. Gorjian, Shiva & Bousi, Erion & Özdemir, Özal Emre & Trommsdorff, Max & Kumar, Nallapaneni Manoj & Anand, Abhishek & Kant, Karunesh & Chopra, Shauhrat S., 2022. "Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    10. Frank Figge, 2005. "Value‐based environmental management. From environmental shareholder value to environmental option value," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 12(1), pages 19-30, March.
    11. Huysveld, Sophie & Van Meensel, Jef & Van linden, Veerle & De Meester, Steven & Peiren, Nico & Muylle, Hilde & Dewulf, Jo & Lauwers, Ludwig, 2017. "Communicative farm-specific diagnosis of potential simultaneous savings in costs and natural resource demand of feed on dairy farms," Agricultural Systems, Elsevier, vol. 150(C), pages 34-45.
    12. Ahmad, Farhan & Bask, Anu & Laari, Sini & Robinson, Craig V., 2023. "Business management perspectives on the circular economy: Present state and future directions," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    13. Ivan Deviatkin & Sanna Rousu & Malahat Ghoreishi & Mohammad Naji Nassajfar & Mika Horttanainen & Ville Leminen, 2022. "Implementation of Circular Economy Strategies within the Electronics Sector: Insights from Finnish Companies," Sustainability, MDPI, vol. 14(6), pages 1-11, March.
    14. Davide Clerici & Francesco Mocera & Aurelio Somà, 2021. "Experimental Characterization of Lithium-Ion Cell Strain Using Laser Sensors," Energies, MDPI, vol. 14(19), pages 1-17, October.
    15. Janulevičius, Algirdas & Damanauskas, Vidas, 2015. "How to select air pressures in the tires of MFWD (mechanical front-wheel drive) tractor to minimize fuel consumption for the case of reasonable wheel slip," Energy, Elsevier, vol. 90(P1), pages 691-700.
    16. Zhang, Bo & Zhang, Jiangyan & Shen, Tielong, 2022. "Optimal control design for comfortable-driving of hybrid electric vehicles in acceleration mode," Applied Energy, Elsevier, vol. 305(C).
    17. Fraccascia, Luca & Albino, Vito & Garavelli, Claudio A., 2017. "Technical efficiency measures of industrial symbiosis networks using enterprise input-output analysis," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 273-286.
    18. Małgorzata Holka & Jolanta Kowalska & Magdalena Jakubowska, 2022. "Reducing Carbon Footprint of Agriculture—Can Organic Farming Help to Mitigate Climate Change?," Agriculture, MDPI, vol. 12(9), pages 1-21, September.
    19. Zbigniew Gołaś, 2022. "Changes in Energy-Related Carbon Dioxide Emissions of the Agricultural Sector in Poland from 2000 to 2019," Energies, MDPI, vol. 15(12), pages 1-18, June.
    20. Beltagui, Ahmad & Gold, Stefan & Kunz, Nathan & Reiner, Gerald, 2023. "Special Issue: Rethinking operations and supply chain management in light of the 3D printing revolution," International Journal of Production Economics, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:6:p:1210-:d:1165794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.