IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i5p951-d1133079.html
   My bibliography  Save this article

Carbon-Emission Density of Crop Production in China: Spatiotemporal Characteristics, Regional Disparities, and Convergence

Author

Listed:
  • Haoyue Wu

    (School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
    The two authors contributed to the work equally and should be regarded as co-first authors.)

  • Wanqi Yan

    (College of Business and Tourism, Sichuan Agricultural University, Chengdu 611830, China
    The two authors contributed to the work equally and should be regarded as co-first authors.)

  • Xiangjiang Zheng

    (School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China)

  • Lei Zhou

    (School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China)

  • Jinshan Ma

    (School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China)

  • Lu Liu

    (School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China)

  • Yue Meng

    (College of Business and Tourism, Sichuan Agricultural University, Chengdu 611830, China)

Abstract

An analysis of carbon emissions of crop production provides paths for global warming mitigation. Existing studies have focused on the magnitude of the carbon emissions from crop production, which is unreasonable for inter-location comparison due to neglecting regional variations in cultivation technologies and planting scale. Different from the conventional idea, this paper estimated the carbon-emission density of crop production (CEDCP) based on carbon emissions per hectare of crop production. With the 30 Chinese provinces between 2000 and 2020 as the study area, temporal dynamics and spatial patterns of the CEDCP were explored, regional disparities of the CEDCP were discussed based on the Theil index, and the possibility of regional coordinated optimization for the CEDCP was explored by relying on the convergence tests. The results show that the average annual CEDCP in China was 1.462 t/hm 2 , reaching a peak of 1.576 t/hm 2 in 2015. The national carbon-emission densities of agricultural materials, rice fields, soil management, and straw burning were 0.492 t/hm 2 , 0.390 t/hm 2 , 0.189 t/hm 2 , and 0.391 t/hm 2 , respectively. In many provinces, the CEDCP increased first and then decreased, presenting a spatial pattern of high in the eastern region and low in the western region. Regional disparities of CEDCP shrank early but expanded later, and the disparities within the western region had always contributed considerably to the overall disparities. The CEDCP had shown σ- and β- convergence in both national and regional scales, and the convergence process had positive spillover effects. These findings suggest that inter-provincial cooperation may facilitate the CEDCP to converge.

Suggested Citation

  • Haoyue Wu & Wanqi Yan & Xiangjiang Zheng & Lei Zhou & Jinshan Ma & Lu Liu & Yue Meng, 2023. "Carbon-Emission Density of Crop Production in China: Spatiotemporal Characteristics, Regional Disparities, and Convergence," Agriculture, MDPI, vol. 13(5), pages 1-17, April.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:5:p:951-:d:1133079
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/5/951/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/5/951/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haoyue Wu & Hanjiao Huang & Jin Tang & Wenkuan Chen & Yanqiu He, 2019. "Net Greenhouse Gas Emissions from Agriculture in China: Estimation, Spatial Correlation and Convergence," Sustainability, MDPI, vol. 11(18), pages 1-19, September.
    2. Ruoxi Zhong & Qiang He & Yanbin Qi, 2022. "Digital Economy, Agricultural Technological Progress, and Agricultural Carbon Intensity: Evidence from China," IJERPH, MDPI, vol. 19(11), pages 1-18, May.
    3. Schneider, Uwe A. & Kumar, Pushpam, 2008. "Greenhouse Gas Mitigation through Agriculture," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 23(1), pages 1-5.
    4. Uwe A. Schneider & Pete Smith, 2008. "Greenhouse Gas Emission Mitigation and Emission Intensities in Agriculture," Working Papers FNU-164, Research unit Sustainability and Global Change, Hamburg University, revised Jul 2008.
    5. Pushpam Kumar & Uwe A. Schneider, 2008. "Greenhouse gas emission mitigation through agriculture," Working Papers FNU-155, Research unit Sustainability and Global Change, Hamburg University, revised Feb 2008.
    6. Khadiza Begum & Matthias Kuhnert & Jagadeesh Yeluripati & Stephen Ogle & William Parton & Md Abdul Kader & Pete Smith, 2018. "Model Based Regional Estimates of Soil Organic Carbon Sequestration and Greenhouse Gas Mitigation Potentials from Rice Croplands in Bangladesh," Land, MDPI, vol. 7(3), pages 1-18, July.
    7. Jiaxing Pang & Hengji Li & Chengpeng Lu & Chenyu Lu & Xingpeng Chen, 2020. "Regional Differences and Dynamic Evolution of Carbon Emission Intensity of Agriculture Production in China," IJERPH, MDPI, vol. 17(20), pages 1-14, October.
    8. Mengyao Xia & Di Zeng & Qi Huang & Xinjian Chen, 2022. "Coupling Coordination and Spatiotemporal Dynamic Evolution between Agricultural Carbon Emissions and Agricultural Modernization in China 2010–2020," Agriculture, MDPI, vol. 12(11), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haoyue Wu & Jin Tang & Hanjiao Huang & Wenkuan Chen & Yue Meng, 2021. "Net Carbon Sequestration Performance of Cropland Use in China’s Principal Grain-Producing Area: An Evaluation and Spatiotemporal Divergence," Land, MDPI, vol. 10(7), pages 1-19, July.
    2. Kerstin Jantke & Martina J. Hartmann & Livia Rasche & Benjamin Blanz & Uwe A. Schneider, 2020. "Agricultural Greenhouse Gas Emissions: Knowledge and Positions of German Farmers," Land, MDPI, vol. 9(5), pages 1-13, April.
    3. Huarui Gong & Jing Li & Zhen Liu & Yitao Zhang & Ruixing Hou & Zhu Ouyang, 2022. "Mitigated Greenhouse Gas Emissions in Cropping Systems by Organic Fertilizer and Tillage Management," Land, MDPI, vol. 11(7), pages 1-18, July.
    4. Oliver Lazarus & Sonali McDermid & Jennifer Jacquet, 2021. "The climate responsibilities of industrial meat and dairy producers," Climatic Change, Springer, vol. 165(1), pages 1-21, March.
    5. David Bryngelsson & Fredrik Hedenus & Daniel J. A. Johansson & Christian Azar & Stefan Wirsenius, 2017. "How Do Dietary Choices Influence the Energy-System Cost of Stabilizing the Climate?," Energies, MDPI, vol. 10(2), pages 1-13, February.
    6. Telmo José Mendes & Diego Silva Siqueira & Eduardo Barretto Figueiredo & Ricardo de Oliveira Bordonal & Mara Regina Moitinho & José Marques Júnior & Newton La Scala Jr., 2021. "Soil carbon stock estimations: methods and a case study of the Maranhão State, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16410-16427, November.
    7. Ancuta Isbasoiu & Pierre-Alain Jayet & Stéphane De Cara, 2021. "Increasing food production and mitigating agricultural greenhouse gas emissions in the European Union: impacts of carbon pricing and calorie production targeting," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(2), pages 409-440, April.
    8. Connor, Melanie & de Guia, Annalyn H. & Quilloy, Reianne & Van Nguyen, Hung & Gummert, Martin & Sander, Bjoern Ole, 2020. "When climate change is not psychologically distant – Factors influencing the acceptance of sustainable farming practices in the Mekong river Delta of Vietnam," World Development Perspectives, Elsevier, vol. 18(C).
    9. Franco-Luesma, Samuel & Álvaro-Fuentes, Jorge & Plaza-Bonilla, Daniel & Arrúe, José Luis & Cantero-Martínez, Carlos & Cavero, José, 2019. "Influence of irrigation time and frequency on greenhouse gas emissions in a solid-set sprinkler-irrigated maize under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 221(C), pages 303-311.
    10. Anna Kocira & Mariola Staniak & Marzena Tomaszewska & Rafał Kornas & Jacek Cymerman & Katarzyna Panasiewicz & Halina Lipińska, 2020. "Legume Cover Crops as One of the Elements of Strategic Weed Management and Soil Quality Improvement. A Review," Agriculture, MDPI, vol. 10(9), pages 1-41, September.
    11. Kathrin Hasler & Hans-Werner Olfs & Onno Omta & Stefanie Bröring, 2016. "Drivers for the Adoption of Eco-Innovations in the German Fertilizer Supply Chain," Sustainability, MDPI, vol. 8(8), pages 1-18, July.
    12. Miomir Jovanović & Ljiljana Kašćelan & Aleksandra Despotović & Vladimir Kašćelan, 2015. "The Impact of Agro-Economic Factors on GHG Emissions: Evidence from European Developing and Advanced Economies," Sustainability, MDPI, vol. 7(12), pages 1-21, December.
    13. Maraseni, Tek Narayan & Cockfield, Geoff, 2015. "The financial implications of converting farmland to state-supported environmental plantings in the Darling Downs region, Queensland," Agricultural Systems, Elsevier, vol. 135(C), pages 57-65.
    14. Zhao, Rongqin & Liu, Ying & Tian, Mengmeng & Ding, Minglei & Cao, Lianhai & Zhang, Zhanping & Chuai, Xiaowei & Xiao, Liangang & Yao, Lunguang, 2018. "Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus," Land Use Policy, Elsevier, vol. 72(C), pages 480-492.
    15. Wang, Wen, 2015. "Intégrer l'agriculture dans les politiques d'atténuation chinoises," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/14999 edited by Perthuis, Christian de.
    16. Isabel Teichmann, 2015. "An Economic Assessment of Soil Carbon Sequestration with Biochar in Germany," Discussion Papers of DIW Berlin 1476, DIW Berlin, German Institute for Economic Research.
    17. Dritan Osmani, "undated". "A note on optimal transfer schemes, stable coalition for environmental protection and joint maximization assumption," Working Papers FNU-176, Research unit Sustainability and Global Change, Hamburg University.
    18. Ágota Horel & Eszter Tóth & Györgyi Gelybó & Márton Dencső & Imre Potyó, 2018. "Soil CO 2 and N 2 O Emission Drivers in a Vineyard ( Vitis vinifera ) under Different Soil Management Systems and Amendments," Sustainability, MDPI, vol. 10(6), pages 1-15, May.
    19. Gilhespy, Sarah L. & Anthony, Steven & Cardenas, Laura & Chadwick, David & del Prado, Agustin & Li, Changsheng & Misselbrook, Thomas & Rees, Robert M. & Salas, William & Sanz-Cobena, Alberto & Smith, , 2014. "First 20 years of DNDC (DeNitrification DeComposition): Model evolution," Ecological Modelling, Elsevier, vol. 292(C), pages 51-62.
    20. Hennecke, Anna M. & Faist, Mireille & Reinhardt, Jürgen & Junquera, Victoria & Neeft, John & Fehrenbach, Horst, 2013. "Biofuel greenhouse gas calculations under the European Renewable Energy Directive – A comparison of the BioGrace tool vs. the tool of the Roundtable on Sustainable Biofuels," Applied Energy, Elsevier, vol. 102(C), pages 55-62.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:5:p:951-:d:1133079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.