IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i5p1039-d1144178.html
   My bibliography  Save this article

Physicochemical Properties and Evaluation of Antioxidant Potential of Sugar Beet Pulp—Preliminary Analysis for Further Use (Future Prospects)

Author

Listed:
  • Andrzej Baryga

    (Faculty of Biotechnology and Food Sciences, Department of Sugar Industry and Food Safety Management, Lodz University of Technology, ul. Wólczańska 171/173, 90-530 Łódź, Poland)

  • Rafał Ziobro

    (Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland)

  • Dorota Gumul

    (Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland)

  • Justyna Rosicka-Kaczmarek

    (Faculty of Biotechnology and Food Sciences, Institute of Food Technology and Analysis, Lodz University of Technology, ul Stefanowskiego 2/22, 90-537 Łódź, Poland)

  • Karolina Miśkiewicz

    (Faculty of Biotechnology and Food Sciences, Institute of Food Technology and Analysis, Lodz University of Technology, ul Stefanowskiego 2/22, 90-537 Łódź, Poland)

Abstract

High content of pro-health constituents in fruit and vegetable pomaces has led to their utilization as raw materials in food production. They are used mostly in dried form, which is microbiologically stable and allows their storage throughout a longer period. Nevertheless, some materials of these kind are still undervalued, among them sugar beet pulp, which is produced during sugar production in large quantities, often posing an environmental threat, and has been traditionally used for feeding animals. Earlier studies on chemical composition suggested that sugar beet pulp could be highly valuable in terms of health-promoting aspects. Therefore, in this work, research was directed to prove the nutritional potential of this raw material. Thus, an attempt was made to characterize sugar beet pulp in terms of its nutritional and carbohydrate profile, as well as its health-promoting qualities, with particular emphasis on the effect of the extraction on the content of polyphenols and phenolic acids, flavonoids, flavonols, and also their antioxidant activity, measured by ABTS and FRAP methods. The soluble and insoluble fraction of dietary fiber and total dietary fiber were also determined in the pulp. It was found that sugar beet pulp is a valuable source of nutrients (around 10% protein, 7% fat, 8% sugar, 4% ash), dietary fiber (nearly 70%), and has significant amounts of sugars present as free saccharides (fructose and glucose) and polysaccharide residues (arabinose, galacturonic acid, rhamnose, and glucose). In addition, it is a source of polyphenols, flavonoids, and phenolic acids and has a high health-promoting potential regardless of the applied extraction method. Therefore, we may suggest that sugar beet pulp could become an ingredient for pro-health functional food.

Suggested Citation

  • Andrzej Baryga & Rafał Ziobro & Dorota Gumul & Justyna Rosicka-Kaczmarek & Karolina Miśkiewicz, 2023. "Physicochemical Properties and Evaluation of Antioxidant Potential of Sugar Beet Pulp—Preliminary Analysis for Further Use (Future Prospects)," Agriculture, MDPI, vol. 13(5), pages 1-17, May.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:5:p:1039-:d:1144178
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/5/1039/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/5/1039/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zheng, Yi & Yu, Chaowei & Cheng, Yu-Shen & Lee, Christopher & Simmons, Christopher W. & Dooley, Todd M. & Zhang, Ruihong & Jenkins, Bryan M. & VanderGheynst, Jean S., 2012. "Integrating sugar beet pulp storage, hydrolysis and fermentation for fuel ethanol production," Applied Energy, Elsevier, vol. 93(C), pages 168-175.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wirawan, Ferdian & Cheng, Chieh-Lun & Kao, Wei-Chen & Lee, Duu-Jong & Chang, Jo-Shu, 2012. "Cellulosic ethanol production performance with SSF and SHF processes using immobilized Zymomonas mobilis," Applied Energy, Elsevier, vol. 100(C), pages 19-26.
    2. Dodić, Jelena M. & Vučurović, Damjan G. & Dodić, Siniša N. & Grahovac, Jovana A. & Popov, Stevan D. & Nedeljković, Nataša M., 2012. "Kinetic modelling of batch ethanol production from sugar beet raw juice," Applied Energy, Elsevier, vol. 99(C), pages 192-197.
    3. Raele, Ricardo & Boaventura, João Mauricio Gama & Fischmann, Adalberto Américo & Sarturi, Greici, 2014. "Scenarios for the second generation ethanol in Brazil," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 205-223.
    4. Varrone, C. & Liberatore, R. & Crescenzi, T. & Izzo, G. & Wang, A., 2013. "The valorization of glycerol: Economic assessment of an innovative process for the bioconversion of crude glycerol into ethanol and hydrogen," Applied Energy, Elsevier, vol. 105(C), pages 349-357.
    5. Joanna Berlowska & Katarzyna Pielech-Przybylska & Maria Balcerek & Weronika Cieciura & Sebastian Borowski & Dorota Kregiel, 2017. "Integrated Bioethanol Fermentation/Anaerobic Digestion for Valorization of Sugar Beet Pulp," Energies, MDPI, vol. 10(9), pages 1-16, August.
    6. Choi, In Seong & Kim, Jae-Hoon & Wi, Seung Gon & Kim, Kyoung Hyoun & Bae, Hyeun-Jong, 2013. "Bioethanol production from mandarin (Citrus unshiu) peel waste using popping pretreatment," Applied Energy, Elsevier, vol. 102(C), pages 204-210.
    7. Rajaeifar, Mohammad Ali & Sadeghzadeh Hemayati, Saeed & Tabatabaei, Meisam & Aghbashlo, Mortaza & Mahmoudi, Seyed Bagher, 2019. "A review on beet sugar industry with a focus on implementation of waste-to-energy strategy for power supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 423-442.
    8. Domínguez, Elena & Romaní, Aloia & Domingues, Lucília & Garrote, Gil, 2017. "Evaluation of strategies for second generation bioethanol production from fast growing biomass Paulownia within a biorefinery scheme," Applied Energy, Elsevier, vol. 187(C), pages 777-789.
    9. Zhang, Xinghua & Wang, Tiejun & Ma, Longlong & Zhang, Qi & Huang, Xiaoming & Yu, Yuxiao, 2013. "Production of cyclohexane from lignin degradation compounds over Ni/ZrO2–SiO2 catalysts," Applied Energy, Elsevier, vol. 112(C), pages 533-538.
    10. Borowski, Sebastian & Kucner, Marcin & Czyżowska, Agata & Berłowska, Joanna, 2016. "Co-digestion of poultry manure and residues from enzymatic saccharification and dewatering of sugar beet pulp," Renewable Energy, Elsevier, vol. 99(C), pages 492-500.
    11. Martinez-Hernandez, Elias & Sadhukhan, Jhuma & Campbell, Grant M., 2013. "Integration of bioethanol as an in-process material in biorefineries using mass pinch analysis," Applied Energy, Elsevier, vol. 104(C), pages 517-526.
    12. Ho, Cheng-Yu & Chang, Jui-Jen & Lee, Shih-Chi & Chin, Tsu-Yuan & Shih, Ming-Che & Li, Wen-Hsiung & Huang, Chieh-Chen, 2012. "Development of cellulosic ethanol production process via co-culturing of artificial cellulosomal Bacillus and kefir yeast," Applied Energy, Elsevier, vol. 100(C), pages 27-32.
    13. Manochio, C. & Andrade, B.R. & Rodriguez, R.P. & Moraes, B.S., 2017. "Ethanol from biomass: A comparative overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 743-755.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:5:p:1039-:d:1144178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.