IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i9p1359-d904082.html
   My bibliography  Save this article

Applications of Electronic Nose Coupled with Statistical and Intelligent Pattern Recognition Techniques for Monitoring Tea Quality: A Review

Author

Listed:
  • Sushant Kaushal

    (Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan)

  • Pratik Nayi

    (Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan)

  • Didit Rahadian

    (Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan)

  • Ho-Hsien Chen

    (Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan)

Abstract

Tea is the most widely consumed non-alcoholic beverage worldwide. In the tea sector, the high demand for tea has led to an increase in the adulteration of superior tea grades. The procedure of evaluating tea quality is difficult to assure the highest degree of tea safety in the context of consumer preferences. In recent years, the advancement in sensor technology has replaced the human olfaction system with an artificial olfaction system, i.e., electronic noses (E-noses) for quality control of teas to differentiate the distinct aromas. Therefore, in this review, the potential applications of E-nose as a monitoring device for different teas have been investigated. The instrumentation, working principles, and different gas sensor types employed for E-nose applications have been introduced. The widely used statistical and intelligent pattern recognition methods, namely, PCA, LDA, PLS-DA, KNN, ANN, CNN, SVM, etc., have been discussed in detail. The challenges and the future trends for E-nose devices have also been highlighted. Overall, this review provides the insight that E-nose combined with an appropriate pattern recognition method is a powerful non-destructive tool for monitoring tea quality. In future, E-noses will undoubtedly reduce their shortcomings with improved detection accuracy and consistency by employing food quality testing.

Suggested Citation

  • Sushant Kaushal & Pratik Nayi & Didit Rahadian & Ho-Hsien Chen, 2022. "Applications of Electronic Nose Coupled with Statistical and Intelligent Pattern Recognition Techniques for Monitoring Tea Quality: A Review," Agriculture, MDPI, vol. 12(9), pages 1-19, September.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:9:p:1359-:d:904082
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/9/1359/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/9/1359/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fan Zhang, 2019. "In the Dark," World Bank Publications - Books, The World Bank Group, number 30923, December.
    2. Guangyu Zou & Yanzhong Xiao & Miaosen Wang & Hongmei Zhang, 2018. "Detection of bitterness and astringency of green tea with different taste by electronic nose and tongue," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Wenjing & Li, Jianhao & Zhu, Lirong & Li, Wen & He, Linyan & Gu, Li & Deng, Rui & Shi, Dezhi & Chai, Hongxiang & Gao, Meng, 2021. "Insights of enhancing methane production under high-solid anaerobic digestion of wheat straw by calcium peroxide pretreatment and zero valent iron addition," Renewable Energy, Elsevier, vol. 177(C), pages 1321-1332.
    2. Afia Malik, 2021. "Corporate Governance in the State-Owned Electricity Distribution Companies," PIDE Knowledge Brief 2021:40, Pakistan Institute of Development Economics.
    3. Clément Solié & Alessandro Contestabile & Pedro Espinosa & Stefano Musardo & Sebastiano Bariselli & Chieko Huber & Alan Carleton & Camilla Bellone, 2022. "Superior Colliculus to VTA pathway controls orienting response and influences social interaction in mice," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Xianghua Jiang & Xifang Cao, 2022. "Darboux transformation and novel solitons of a coupled system," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(2), pages 413-424, June.
    5. Santiago Kopoboru & Gloria Cuevas-Rodríguez & Leticia Pérez-Calero, 2020. "Boards that Make a Difference in Firm’s Acquisitions: The Role of Interlocks and Former Politicians in Spain," Sustainability, MDPI, vol. 12(3), pages 1-19, January.
    6. Wang, Xuezhi & Lei, Zhongfang & Shimizu, Kazuya & Zhang, Zhenya & Lee, Duu-Jong, 2021. "Recent advancements in nanobubble water technology and its application in energy recovery from organic solid wastes towards a greater environmental friendliness of anaerobic digestion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    7. Deng, Chen & Lin, Richen & Kang, Xihui & Wu, Benteng & Wall, David & Murphy, Jerry D., 2022. "Improvement in biohydrogen and volatile fatty acid production from seaweed through addition of conductive carbon materials depends on the properties of the conductive materials," Energy, Elsevier, vol. 239(PC).
    8. Mengyuan Qiu & Ji Sha & Sulistyo Utomo, 2020. "Listening to Forests: Comparing the Perceived Restorative Characteristics of Natural Soundscapes before and after the COVID-19 Pandemic," Sustainability, MDPI, vol. 13(1), pages 1-20, December.
    9. Patel, Sanjay K.S. & Das, Devashish & Kim, Sun Chang & Cho, Byung-Kwan & Kalia, Vipin Chandra & Lee, Jung-Kul, 2021. "Integrating strategies for sustainable conversion of waste biomass into dark-fermentative hydrogen and value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    10. Anita Šalić & Bruno Zelić, 2022. "A Game Changer: Microfluidic Technology for Enhancing Biohydrogen Production—Small Size for Great Performance," Energies, MDPI, vol. 15(19), pages 1-22, September.
    11. Chuanyang Liu & Yiquan Wu & Jingjing Liu & Jiaming Han, 2021. "MTI-YOLO: A Light-Weight and Real-Time Deep Neural Network for Insulator Detection in Complex Aerial Images," Energies, MDPI, vol. 14(5), pages 1-19, March.
    12. Farkić, Jelena & Kennell, James, 2021. "Consuming dark sites via street art: Murals at Chernobyl," Annals of Tourism Research, Elsevier, vol. 90(C).
    13. Soares, Juliana Ferreira & Confortin, Tássia Carla & Todero, Izelmar & Mayer, Flávio Dias & Mazutti, Marcio Antonio, 2020. "Dark fermentative biohydrogen production from lignocellulosic biomass: Technological challenges and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    14. Brizeida Raquel Hernández-Sánchez & Giuseppina Maria Cardella & José Carlos Sánchez-García, 2020. "Psychological Factors that Lessen the Impact of COVID-19 on the Self-Employment Intention of Business Administration and Economics’ Students from Latin America," IJERPH, MDPI, vol. 17(15), pages 1-22, July.
    15. Zhang, Mingming & Tao, Qizhi & Shen, Fei & Li, Ziyang, 2022. "Social capital and CEO involuntary turnover," International Review of Economics & Finance, Elsevier, vol. 78(C), pages 338-354.
    16. Magda Dudek & Marcin Dębowski & Joanna Kazimierowicz & Marcin Zieliński & Piera Quattrocelli & Anna Nowicka, 2022. "The Cultivation of Biohydrogen-Producing Tetraselmis subcordiformis Microalgae as the Third Stage of Dairy Wastewater Aerobic Treatment System," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
    17. Ho-Sang Lee, 2022. "Efficient Color Correction Using Normalized Singular Value for Duststorm Image Enhancement," J, MDPI, vol. 5(1), pages 1-20, January.
    18. Qianqian Yang & Qiulan Zhao & Xinyue Li, 2019. "Explicit Solutions and Conservation Laws for a New Integrable Lattice Hierarchy," Complexity, Hindawi, vol. 2019, pages 1-10, June.
    19. Grainger, Corbett A. & Zhang, Fan, 2019. "Electricity shortages and manufacturing productivity in Pakistan," Energy Policy, Elsevier, vol. 132(C), pages 1000-1008.
    20. Azad, Rohit & Chakraborty, Shouvik, 2020. "Green Growth and the Right to Energy in India," Energy Policy, Elsevier, vol. 141(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:9:p:1359-:d:904082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.