IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p2990-d559401.html
   My bibliography  Save this article

Enhanced Biogas Production by Ligninolytic Strain Enterobacter hormaechei KA3 for Anaerobic Digestion of Corn Straw

Author

Listed:
  • Qing Zhang

    (Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou 730000, China)

  • Jing Zhang

    (Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou 730000, China)

  • Shuai Zhao

    (Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou 730000, China)

  • Peizhi Song

    (Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou 730000, China)

  • Yanli Chen

    (Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou 730000, China)

  • Pu Liu

    (Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou 730000, China)

  • Chunlan Mao

    (Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou 730000, China)

  • Xiangkai Li

    (Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou 730000, China)

Abstract

Lignin-feeding insect gut is a natural ligninolytic microbial bank for the sustainable conversion of crop straw to biogas. However, limited studies have been done on highly efficient microbes. Here, an efficient ligninolytic strain Enterobacter hormaechei KA3 was isolated from the gut microbiomes of lignin-feeding Hypomeces squamosus Fabricius, and its effects on lignin degradation and anaerobic digestion were investigated. No research has been reported. Results showed that strain KA3 had better lignin-degrading ability for corn straw with a higher lignin-degrading rate (32.05%) and lignin peroxidase activity (585.2 U/L). Furthermore, the highest cumulative biogas yield (59.19 L/kg-VS) and methane yield (14.76 L/kg-VS) were obtained for KA3 inoculation, which increased by 20% and 31%, respectively, compared to CK. Higher removal rates of COD, TS, and vs. of 41.6%, 43.11%, and 66.59% were also found. Moreover, microbial community diversity increased as digestion time prolonged in TG, and bacteria were more diverse than archaea. The dominant genus taxon, for methanogens, was Methanosate in TG, while in CK was Methanosarcina . For bacteria, dominant taxa were similar for all groups, which were Solibacillus and Clostridium . Therefore, strain KA3 improved the methane conversion of the substrate. This study could provide a new microbial resource and practical application base for lignin degradation.

Suggested Citation

  • Qing Zhang & Jing Zhang & Shuai Zhao & Peizhi Song & Yanli Chen & Pu Liu & Chunlan Mao & Xiangkai Li, 2021. "Enhanced Biogas Production by Ligninolytic Strain Enterobacter hormaechei KA3 for Anaerobic Digestion of Corn Straw," Energies, MDPI, vol. 14(11), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:2990-:d:559401
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/2990/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/2990/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gabriele Mancini & Stefano Papirio & Piet N. L. Lens & Giovanni Esposito, 2019. "A Preliminary Study of the Effect of Bioavailable Fe and Co on the Anaerobic Digestion of Rice Straw," Energies, MDPI, vol. 12(4), pages 1-11, February.
    2. Aditi David & Tanvi Govil & Abhilash Kumar Tripathi & Julie McGeary & Kylie Farrar & Rajesh Kumar Sani, 2018. "Thermophilic Anaerobic Digestion: Enhanced and Sustainable Methane Production from Co-Digestion of Food and Lignocellulosic Wastes," Energies, MDPI, vol. 11(8), pages 1-13, August.
    3. Fan Zhang, 2019. "In the Dark," World Bank Publications - Books, The World Bank Group, number 30923, December.
    4. Andreas Otto Wagner & Nina Lackner & Mira Mutschlechner & Eva Maria Prem & Rudolf Markt & Paul Illmer, 2018. "Biological Pretreatment Strategies for Second-Generation Lignocellulosic Resources to Enhance Biogas Production," Energies, MDPI, vol. 11(7), pages 1-14, July.
    5. Wenyao Jin & Xiaochen Xu & Fenglin Yang, 2018. "Application of Rumen Microorganisms for Enhancing Biogas Production of Corn Straw and Livestock Manure in a Pilot-Scale Anaerobic Digestion System: Performance and Microbial Community Analysis," Energies, MDPI, vol. 11(4), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitar Karakashev & Yifeng Zhang, 2018. "BioEnergy and BioChemicals Production from Biomass and Residual Resources," Energies, MDPI, vol. 11(8), pages 1-6, August.
    2. Tian, Wenjing & Li, Jianhao & Zhu, Lirong & Li, Wen & He, Linyan & Gu, Li & Deng, Rui & Shi, Dezhi & Chai, Hongxiang & Gao, Meng, 2021. "Insights of enhancing methane production under high-solid anaerobic digestion of wheat straw by calcium peroxide pretreatment and zero valent iron addition," Renewable Energy, Elsevier, vol. 177(C), pages 1321-1332.
    3. Afia Malik, 2021. "Corporate Governance in the State-Owned Electricity Distribution Companies," PIDE Knowledge Brief 2021:40, Pakistan Institute of Development Economics.
    4. Clément Solié & Alessandro Contestabile & Pedro Espinosa & Stefano Musardo & Sebastiano Bariselli & Chieko Huber & Alan Carleton & Camilla Bellone, 2022. "Superior Colliculus to VTA pathway controls orienting response and influences social interaction in mice," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    6. Xianghua Jiang & Xifang Cao, 2022. "Darboux transformation and novel solitons of a coupled system," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(2), pages 413-424, June.
    7. Alberto Benato & Alarico Macor, 2019. "Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions," Energies, MDPI, vol. 12(6), pages 1-31, March.
    8. Małgorzata Hawrot-Paw & Aleksander Stańczuk, 2022. "From Waste Biomass to Cellulosic Ethanol by Separate Hydrolysis and Fermentation (SHF) with Trichoderma viride," Sustainability, MDPI, vol. 15(1), pages 1-10, December.
    9. Santiago Kopoboru & Gloria Cuevas-Rodríguez & Leticia Pérez-Calero, 2020. "Boards that Make a Difference in Firm’s Acquisitions: The Role of Interlocks and Former Politicians in Spain," Sustainability, MDPI, vol. 12(3), pages 1-19, January.
    10. Ndayisenga, Fabrice & Yu, Zhisheng & Zheng, Jianzhong & Wang, Bobo & Liang, Hongxia & Phulpoto, Irfan Ali & Habiyakare, Telesphore & Zhou, Dandan, 2021. "Microbial electrohydrogenesis cell and dark fermentation integrated system enhances biohydrogen production from lignocellulosic agricultural wastes: Substrate pretreatment towards optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    11. Wang, Xuezhi & Lei, Zhongfang & Shimizu, Kazuya & Zhang, Zhenya & Lee, Duu-Jong, 2021. "Recent advancements in nanobubble water technology and its application in energy recovery from organic solid wastes towards a greater environmental friendliness of anaerobic digestion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    12. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1204-1220.
    13. Deng, Chen & Lin, Richen & Kang, Xihui & Wu, Benteng & Wall, David & Murphy, Jerry D., 2022. "Improvement in biohydrogen and volatile fatty acid production from seaweed through addition of conductive carbon materials depends on the properties of the conductive materials," Energy, Elsevier, vol. 239(PC).
    14. Mengyuan Qiu & Ji Sha & Sulistyo Utomo, 2020. "Listening to Forests: Comparing the Perceived Restorative Characteristics of Natural Soundscapes before and after the COVID-19 Pandemic," Sustainability, MDPI, vol. 13(1), pages 1-20, December.
    15. Spyridon Achinas & Gerrit Jan Willem Euverink, 2019. "Effect of Combined Inoculation on Biogas Production from Hardly Degradable Material," Energies, MDPI, vol. 12(2), pages 1-13, January.
    16. Patel, Sanjay K.S. & Das, Devashish & Kim, Sun Chang & Cho, Byung-Kwan & Kalia, Vipin Chandra & Lee, Jung-Kul, 2021. "Integrating strategies for sustainable conversion of waste biomass into dark-fermentative hydrogen and value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    17. Anita Šalić & Bruno Zelić, 2022. "A Game Changer: Microfluidic Technology for Enhancing Biohydrogen Production—Small Size for Great Performance," Energies, MDPI, vol. 15(19), pages 1-22, September.
    18. Chuanyang Liu & Yiquan Wu & Jingjing Liu & Jiaming Han, 2021. "MTI-YOLO: A Light-Weight and Real-Time Deep Neural Network for Insulator Detection in Complex Aerial Images," Energies, MDPI, vol. 14(5), pages 1-19, March.
    19. Sushant Kaushal & Pratik Nayi & Didit Rahadian & Ho-Hsien Chen, 2022. "Applications of Electronic Nose Coupled with Statistical and Intelligent Pattern Recognition Techniques for Monitoring Tea Quality: A Review," Agriculture, MDPI, vol. 12(9), pages 1-19, September.
    20. Farkić, Jelena & Kennell, James, 2021. "Consuming dark sites via street art: Murals at Chernobyl," Annals of Tourism Research, Elsevier, vol. 90(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:2990-:d:559401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.