IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i5p614-d802808.html
   My bibliography  Save this article

Climate Change Impacts on Crop Yield of Winter Wheat ( Triticum aestivum ) and Maize ( Zea mays ) and Soil Organic Carbon Stocks in Northern China

Author

Listed:
  • Chuang Liu

    (Key Laboratory of Nutrient Cycling Resources and Environment of Anhui, Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Hefei 230001, China
    Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB, UK)

  • Huiyi Yang

    (Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB, UK
    Current address: Natural Resources Institute, Faculty of Engineering & Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK.)

  • Kate Gongadze

    (Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB, UK
    Current address: Department of Aerospace Engineering, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK.)

  • Paul Harris

    (Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB, UK)

  • Mingbin Huang

    (State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Xianyang 712100, China)

  • Lianhai Wu

    (Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB, UK)

Abstract

Agricultural system models provide an effective tool for forecasting crop productivity and nutrient budgets under future climate change. This study investigates the potential impacts of climate change on crop failure, grain yield and soil organic carbon (SOC) for both winter wheat ( Triticum aestivum L.) and maize ( Zea mays L.) in northern China, using the SPACSYS model. The model was calibrated and validated with datasets from 20-year long-term experiments (1985–2004) for the Loess plateau, and then used to forecast production (2020–2049) under six sharing social-economic pathway climate scenarios for both wheat and maize crops with irrigation. Results suggested that warmer climatic scenarios might be favourable for reducing the crop failure rate and increasing the grain yield for winter wheat, while the same climatic scenarios were unfavourable for maize production in the region. Furthermore, future SOC stocks in the topsoil layer (0–30 cm) could increase but in the subsoil layer (30–100 cm) could decrease, regardless of the chosen crop.

Suggested Citation

  • Chuang Liu & Huiyi Yang & Kate Gongadze & Paul Harris & Mingbin Huang & Lianhai Wu, 2022. "Climate Change Impacts on Crop Yield of Winter Wheat ( Triticum aestivum ) and Maize ( Zea mays ) and Soil Organic Carbon Stocks in Northern China," Agriculture, MDPI, vol. 12(5), pages 1-12, April.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:5:p:614-:d:802808
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/5/614/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/5/614/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huang, Mingbin & Dang, Tinghui & Gallichand, Jacques & Goulet, Monique, 2003. "Effect of increased fertilizer applications to wheat crop on soil-water depletion in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 58(3), pages 267-278, February.
    2. Yan Shan & Mingbin Huang & Paul Harris & Lianhai Wu, 2021. "A Sensitivity Analysis of the SPACSYS Model," Agriculture, MDPI, vol. 11(7), pages 1-30, July.
    3. Brian C. O’Neill & Timothy R. Carter & Kristie Ebi & Paula A. Harrison & Eric Kemp-Benedict & Kasper Kok & Elmar Kriegler & Benjamin L. Preston & Keywan Riahi & Jana Sillmann & Bas J. Ruijven & Detlef, 2020. "Achievements and needs for the climate change scenario framework," Nature Climate Change, Nature, vol. 10(12), pages 1074-1084, December.
    4. Wu, L. & McGechan, M.B. & McRoberts, N. & Baddeley, J.A. & Watson, C.A., 2007. "SPACSYS: Integration of a 3D root architecture component to carbon, nitrogen and water cycling—Model description," Ecological Modelling, Elsevier, vol. 200(3), pages 343-359.
    5. Sébastien Fontaine & Sébastien Barot & Pierre Barré & Nadia Bdioui & Bruno Mary & Cornelia Rumpel, 2007. "Stability of organic carbon in deep soil layers controlled by fresh carbon supply," Nature, Nature, vol. 450(7167), pages 277-280, November.
    6. Xiao, Dengpan & Liu, De Li & Feng, Puyu & Wang, Bin & Waters, Cathy & Shen, Yanjun & Qi, Yongqing & Bai, Huizi & Tang, Jianzhao, 2021. "Future climate change impacts on grain yield and groundwater use under different cropping systems in the North China Plain," Agricultural Water Management, Elsevier, vol. 246(C).
    7. Wu, L. & Harris, P. & Misselbrook, T.H. & Lee, M.R.F., 2022. "Simulating grazing beef and sheep systems," Agricultural Systems, Elsevier, vol. 195(C).
    8. R. Mall & Ranjeet Singh & Akhilesh Gupta & G. Srinivasan & L. Rathore, 2007. "Impact of climate change on Indian agriculture: a review," Climatic Change, Springer, vol. 82(1), pages 225-231, May.
    9. Gaupp, Franziska & Hall, Jim & Mitchell, Dann & Dadson, Simon, 2019. "Increasing risks of multiple breadbasket failure under 1.5 and 2 °C global warming," Agricultural Systems, Elsevier, vol. 175(C), pages 34-45.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Zhang & Yingnan Yang & Tinghui Dang & Yuanjun Zhu & Mingbin Huang, 2022. "Responses of Wheat Yield under Different Fertilization Treatments to Climate Change Based on a 35-Year In Situ Experiment," Agriculture, MDPI, vol. 12(9), pages 1-13, September.
    2. Sebastian C. Ibañez & Christopher P. Monterola, 2023. "A Global Forecasting Approach to Large-Scale Crop Production Prediction with Time Series Transformers," Agriculture, MDPI, vol. 13(9), pages 1-27, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quan, Hao & Ding, Dianyuan & Wu, Lihong & Qiao, Ruonan & Dong, Qin'ge & Zhang, Tibin & Feng, Hao & Wu, Lianhai & Siddique, Kadambot H.M., 2022. "Future climate change impacts on mulched maize production in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 266(C).
    2. Turkeltaub, Tuvia & Gongadze, Kate & Lü, Yihe & Huang, Mingbin & Jia, Xiaoxu & Yang, Huiyi & Shao, Ming'an & Binley, Andrew & Harris, Paul & Wu, Lianhai, 2022. "A review of models for simulating the soil-plant interface for different climatic conditions and land uses in the Loess Plateau, China," Ecological Modelling, Elsevier, vol. 474(C).
    3. Jeetendra Prakash Aryal & Tek B. Sapkota & Ritika Khurana & Arun Khatri-Chhetri & Dil Bahadur Rahut & M. L. Jat, 2020. "Climate change and agriculture in South Asia: adaptation options in smallholder production systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5045-5075, August.
    4. Zeke Marshall & Paul E. Brockway, 2020. "A Net Energy Analysis of the Global Agriculture, Aquaculture, Fishing and Forestry System," Biophysical Economics and Resource Quality, Springer, vol. 5(2), pages 1-27, June.
    5. Virna Estefania Moran-Rodas & Verena Preusse & Christine Wachendorf, 2022. "Agricultural Management Practices and Decision-Making in View of Soil Organic Matter in the Urbanizing Region of Bangalore," Sustainability, MDPI, vol. 14(10), pages 1-27, May.
    6. Jane Spiteri, 2023. "Approaches to Foster Young Children’s Engagement with Climate Action: A Scoping Review," Sustainability, MDPI, vol. 15(19), pages 1-17, October.
    7. Hu, Yajin & Ma, Penghui & Zhang, Binbin & Hill, Robert L. & Wu, Shufang & Dong, Qin’ge & Chen, Guangjie, 2019. "Exploring optimal soil mulching for the wheat-maize cropping system in sub-humid drought-prone regions in China," Agricultural Water Management, Elsevier, vol. 219(C), pages 59-71.
    8. Prabal Barua & Syed Hafizur Rahman, 2020. "Resilience Of Agriculture Farmers For Crop Production In Responses To Climate Change Impact On South - Eastern Coast Of Bangladesh," Environment & Ecosystem Science (EES), Zibeline International Publishing, vol. 4(1), pages 28-37, April.
    9. Yan Shan & Mingbin Huang & Paul Harris & Lianhai Wu, 2021. "A Sensitivity Analysis of the SPACSYS Model," Agriculture, MDPI, vol. 11(7), pages 1-30, July.
    10. Tong-Hui Wu & Yu-Fu Hu & Yan-Yan Zhang & Xiang-Yang Shu & Ze-Peng Yang & Wei Zhou & Cheng-Yi Huang & Jie Li & Zhi Li & Jia He & Ying Yu, 2022. "Changes in soil organic carbon and its fractions under grassland reclamation in alpine-cold soils, China," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 17(4), pages 211-221.
    11. Simon Willcock & Gregory S. Cooper & John Addy & John A. Dearing, 2023. "Earlier collapse of Anthropocene ecosystems driven by multiple faster and noisier drivers," Nature Sustainability, Nature, vol. 6(11), pages 1331-1342, November.
    12. Aneta Kowalska & Marek Kucbel & Anna Grobelak, 2021. "Potential and Mechanisms for Stable C Storage in the Post-Mining Soils under Long-Term Study in Mitigation of Climate Change," Energies, MDPI, vol. 14(22), pages 1-15, November.
    13. Youtang Zhang & Hagos Mesfin Berhe, 2022. "The Impact of Green Investment and Green Marketing on Business Performance: The Mediation Role of Corporate Social Responsibility in Ethiopia’s Chinese Textile Companies," Sustainability, MDPI, vol. 14(7), pages 1-24, March.
    14. Skea, Jim & van Diemen, Renée & Portugal-Pereira, Joana & Khourdajie, Alaa Al, 2021. "Outlooks, explorations and normative scenarios: Approaches to global energy futures compared," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    15. Felipe Romero-Perdomo & Juan David Carvajalino-Umaña & Jaime Leonardo Moreno-Gallego & Natalia Ardila & Miguel Ángel González-Curbelo, 2022. "Research Trends on Climate Change and Circular Economy from a Knowledge Mapping Perspective," Sustainability, MDPI, vol. 14(1), pages 1-17, January.
    16. Chen, Peipei & Wu, Yi & Zhong, Honglin & Long, Yin & Meng, Jing, 2022. "Exploring household emission patterns and driving factors in Japan using machine learning methods," Applied Energy, Elsevier, vol. 307(C).
    17. Fan, Tinglu & Wang, Shuying & Xiaoming, Tang & Luo, Junjie & Stewart, Bob A. & Gao, Yufeng, 2005. "Grain yield and water use in a long-term fertilization trial in Northwest China," Agricultural Water Management, Elsevier, vol. 76(1), pages 36-52, July.
    18. Ludovic Henneron & Jerôme Balesdent & Gaël Alvarez & Pierre Barré & François Baudin & Isabelle Basile-Doelsch & Lauric Cécillon & Alejandro Fernandez-Martinez & Christine Hatté & Sébastien Fontaine, 2022. "Bioenergetic control of soil carbon dynamics across depth," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    19. B. Wang & W. Liu & Q. Xue & T. Dang & C. Gao & J. Chen & B. Zhang, 2013. "Soil water cycle and crop water use efficiency after long-term nitrogen fertilization in Loess Plateau," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 59(1), pages 1-7.
    20. Surabhi Hota & Vidyanand Mishra & Krishna Kumar Mourya & Krishna Giri & Dinesh Kumar & Prakash Kumar Jha & Uday Shankar Saikia & P. V. Vara Prasad & Sanjay Kumar Ray, 2022. "Land Use, Landform, and Soil Management as Determinants of Soil Physicochemical Properties and Microbial Abundance of Lower Brahmaputra Valley, India," Sustainability, MDPI, vol. 14(4), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:5:p:614-:d:802808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.