IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v6y2023i11d10.1038_s41893-023-01157-x.html
   My bibliography  Save this article

Earlier collapse of Anthropocene ecosystems driven by multiple faster and noisier drivers

Author

Listed:
  • Simon Willcock

    (Rothamsted Research
    Bangor University)

  • Gregory S. Cooper

    (University of Sheffield, Western Bank
    University of Sheffield, Western Bank)

  • John Addy

    (Rothamsted Research)

  • John A. Dearing

    (University of Southampton)

Abstract

A major concern for the world’s ecosystems is the possibility of collapse, where landscapes and the societies they support change abruptly. Accelerating stress levels, increasing frequencies of extreme events and strengthening intersystem connections suggest that conventional modelling approaches based on incremental changes in a single stress may provide poor estimates of the impact of climate and human activities on ecosystems. We conduct experiments on four models that simulate abrupt changes in the Chilika lagoon fishery, the Easter Island community, forest dieback and lake water quality—representing ecosystems with a range of anthropogenic interactions. Collapses occur sooner under increasing levels of primary stress but additional stresses and/or the inclusion of noise in all four models bring the collapses substantially closer to today by ~38–81%. We discuss the implications for further research and the need for humanity to be vigilant for signs that ecosystems are degrading even more rapidly than previously thought.

Suggested Citation

  • Simon Willcock & Gregory S. Cooper & John Addy & John A. Dearing, 2023. "Earlier collapse of Anthropocene ecosystems driven by multiple faster and noisier drivers," Nature Sustainability, Nature, vol. 6(11), pages 1331-1342, November.
  • Handle: RePEc:nat:natsus:v:6:y:2023:i:11:d:10.1038_s41893-023-01157-x
    DOI: 10.1038/s41893-023-01157-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-023-01157-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-023-01157-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Markus Reichstein & Felix Riede & Dorothea Frank, 2021. "More floods, fires and cyclones — plan for domino effects on sustainability goals," Nature, Nature, vol. 592(7854), pages 347-349, April.
    2. Fabrice Renaud & Jörn Birkmann & Marion Damm & Gilberto Gallopín, 2010. "Understanding multiple thresholds of coupled social–ecological systems exposed to natural hazards as external shocks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 55(3), pages 749-763, December.
    3. Paul D. L. Ritchie & Joseph J. Clarke & Peter M. Cox & Chris Huntingford, 2021. "Overshooting tipping point thresholds in a changing climate," Nature, Nature, vol. 592(7855), pages 517-523, April.
    4. Yongyang Cai & Timothy M. Lenton & Thomas S. Lontzek, 2016. "Risk of multiple interacting tipping points should encourage rapid CO2 emission reduction," Nature Climate Change, Nature, vol. 6(5), pages 520-525, May.
    5. Gregory S. Cooper & Simon Willcock & John A. Dearing, 2020. "Regime shifts occur disproportionately faster in larger ecosystems," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    6. Gaupp, Franziska & Hall, Jim & Mitchell, Dann & Dadson, Simon, 2019. "Increasing risks of multiple breadbasket failure under 1.5 and 2 °C global warming," Agricultural Systems, Elsevier, vol. 175(C), pages 34-45.
    7. Rong Wang & John A. Dearing & Peter G. Langdon & Enlou Zhang & Xiangdong Yang & Vasilis Dakos & Marten Scheffer, 2012. "Flickering gives early warning signals of a critical transition to a eutrophic lake state," Nature, Nature, vol. 492(7429), pages 419-422, December.
    8. Marten Scheffer & Jordi Bascompte & William A. Brock & Victor Brovkin & Stephen R. Carpenter & Vasilis Dakos & Hermann Held & Egbert H. van Nes & Max Rietkerk & George Sugihara, 2009. "Early-warning signals for critical transitions," Nature, Nature, vol. 461(7260), pages 53-59, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon DeDeo, 2016. "Conflict and Computation on Wikipedia: A Finite-State Machine Analysis of Editor Interactions," Future Internet, MDPI, vol. 8(3), pages 1-23, July.
    2. Dmitry Gromov & Thorsten Upmann, 2021. "Dynamics and Economics of Shallow Lakes: A Survey," Sustainability, MDPI, vol. 13(24), pages 1-16, December.
    3. Roland Clift & Sarah Sim & Henry King & Jonathan L. Chenoweth & Ian Christie & Julie Clavreul & Carina Mueller & Leo Posthuma & Anne-Marie Boulay & Rebecca Chaplin-Kramer & Julia Chatterton & Fabrice , 2017. "The Challenges of Applying Planetary Boundaries as a Basis for Strategic Decision-Making in Companies with Global Supply Chains," Sustainability, MDPI, vol. 9(2), pages 1-23, February.
    4. Christian Meisel & Andreas Klaus & Christian Kuehn & Dietmar Plenz, 2015. "Critical Slowing Down Governs the Transition to Neuron Spiking," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-20, February.
    5. Manfred Füllsack & Daniel Reisinger & Marie Kapeller & Georg Jäger, 2022. "Early warning signals from the periphery," Journal of Computational Social Science, Springer, vol. 5(1), pages 665-685, May.
    6. Andrew R. Tilman & Elisabeth H. Krueger & Lisa C. McManus & James R. Watson, 2023. "Maintaining human wellbeing as socio-environmental systems undergo regime shifts," Papers 2309.04578, arXiv.org.
    7. James Tan & Siew Ann Cheong, 2016. "The Regime Shift Associated with the 2004–2008 US Housing Market Bubble," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-8, September.
    8. Timothy M. Lenton & Jesse F. Abrams & Annett Bartsch & Sebastian Bathiany & Chris A. Boulton & Joshua E. Buxton & Alessandra Conversi & Andrew M. Cunliffe & Sophie Hebden & Thomas Lavergne & Benjamin , 2024. "Remotely sensing potential climate change tipping points across scales," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Thomas M. Bury & Daniel Dylewsky & Chris T. Bauch & Madhur Anand & Leon Glass & Alvin Shrier & Gil Bub, 2023. "Predicting discrete-time bifurcations with deep learning," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Hongbo Duan & Gupeng Zhang & Shouyang Wang & Ying Fan, 2018. "Balancing China’s climate damage risk against emission control costs," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(3), pages 387-403, March.
    11. Dominika Czyz & Karolina Safarzynska, 2023. "Catastrophic Damages and the Optimal Carbon Tax Under Loss Aversion," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(2), pages 303-340, June.
    12. Duncan A. O’Brien & Smita Deb & Gideon Gal & Stephen J. Thackeray & Partha S. Dutta & Shin-ichiro S. Matsuzaki & Linda May & Christopher F. Clements, 2023. "Early warning signals have limited applicability to empirical lake data," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. James J Elser & Timothy J Elser & Stephen R Carpenter & William A Brock, 2014. "Regime Shift in Fertilizer Commodities Indicates More Turbulence Ahead for Food Security," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-7, May.
    14. Martin Zapf & Hermann Pengg & Christian Weindl, 2019. "How to Comply with the Paris Agreement Temperature Goal: Global Carbon Pricing According to Carbon Budgets," Energies, MDPI, vol. 12(15), pages 1-20, August.
    15. Darrell Jiajie Tay & Chung-I Chou & Sai-Ping Li & Shang You Tee & Siew Ann Cheong, 2016. "Bubbles Are Departures from Equilibrium Housing Markets: Evidence from Singapore and Taiwan," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-13, November.
    16. Dur, Gaël & Won, Eun-Ji & Han, Jeonghoon & Lee, Jae-Seong & Souissi, Sami, 2021. "An individual-based model for evaluating post-exposure effects of UV-B radiation on zooplankton reproduction," Ecological Modelling, Elsevier, vol. 441(C).
    17. Martin Lindegren & Vasilis Dakos & Joachim P Gröger & Anna Gårdmark & Georgs Kornilovs & Saskia A Otto & Christian Möllmann, 2012. "Early Detection of Ecosystem Regime Shifts: A Multiple Method Evaluation for Management Application," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    18. Quentin Remy & Julius Hohlfeld & Maxime Vergès & Yann Le Guen & Jon Gorchon & Grégory Malinowski & Stéphane Mangin & Michel Hehn, 2023. "Accelerating ultrafast magnetization reversal by non-local spin transfer," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Matthias Garschagen, 2013. "Resilience and organisational institutionalism from a cross-cultural perspective: an exploration based on urban climate change adaptation in Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(1), pages 25-46, May.
    20. Frederick Ploeg, 2021. "Carbon pricing under uncertainty," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 28(5), pages 1122-1142, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:6:y:2023:i:11:d:10.1038_s41893-023-01157-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.