IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i4p478-d781972.html
   My bibliography  Save this article

Nitrate Leaching in Maize ( Zea mays L.) and Wheat ( Triticum aestivum L.) Irrigated Cropping Systems under Nitrification Inhibitor and/or Intercropping Effects

Author

Listed:
  • Raúl Allende-Montalbán

    (Environment and Agronomy Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), 28040 Madrid, Spain
    Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain)

  • Diana Martín-Lammerding

    (Environment and Agronomy Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), 28040 Madrid, Spain)

  • María del Mar Delgado

    (Environment and Agronomy Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), 28040 Madrid, Spain)

  • Miguel A. Porcel

    (Environment and Agronomy Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), 28040 Madrid, Spain)

  • José L. Gabriel

    (Environment and Agronomy Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), 28040 Madrid, Spain
    Centro de Estudios e Investigación para la Gestión de Riesgos Agrarios y Medioambientales (CEIGRAM, UPM), 28040 Madrid, Spain)

Abstract

The use of nitrogen fertilizers in agriculture is currently under high pressure to reduce its environmental impact and improve its currently low efficiency. Nitrification inhibitors and/or intercrops emerged in recent decades as useful tools to combat these problems. The objective of the experiment is to study the effect of these techniques on the yield, the nitrogen use efficiency (NUE) and N leaching in a maize–wheat rotation. Six treatments were studied, combining the use of ammonium nitrate sulfate (ASN) alone or with a nitrification inhibitor (DMPSA or 3,4-dimethylpyrazole succinic acid) and the use or absence of vetch ( Vicia sativa L.) as an intercrop. The results showed that fertilized treatments did not show significant differences in crop development, but the use of DMPSA delayed the nitrate (NO 3 − ) availability and reduced N leaching losses (average N leaching reductions around 25% after maize harvest). On the other hand, the use of vetch as an intercrop helped to reduce the negative effects of N deficiency and, at the same time, increased the concentration of N in the soil during the following crop harvest (4.5 kg N ha −1 on average after wheat harvest) and reduced losses due to leaching (average N leaching reductions around 14% after the maize–wheat season). The combination of both techniques (DMPSA and vetch intercrop) at the same time presented a synergic effect and greatly improved the environmental impact of the irrigated maize–wheat system.

Suggested Citation

  • Raúl Allende-Montalbán & Diana Martín-Lammerding & María del Mar Delgado & Miguel A. Porcel & José L. Gabriel, 2022. "Nitrate Leaching in Maize ( Zea mays L.) and Wheat ( Triticum aestivum L.) Irrigated Cropping Systems under Nitrification Inhibitor and/or Intercropping Effects," Agriculture, MDPI, vol. 12(4), pages 1-18, March.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:4:p:478-:d:781972
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/4/478/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/4/478/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xin Zhang & Eric A. Davidson & Denise L. Mauzerall & Timothy D. Searchinger & Patrice Dumas & Ye Shen, 2015. "Managing nitrogen for sustainable development," Nature, Nature, vol. 528(7580), pages 51-59, December.
    2. Quemada, M. & Lassaletta, L. & Jensen, L.S. & Godinot, O. & Brentrup, F. & Buckley, C. & Foray, S. & Hvid, S.K. & Oenema, J. & Richards, K.G. & Oenema, O., 2020. "Exploring nitrogen indicators of farm performance among farm types across several European case studies," Agricultural Systems, Elsevier, vol. 177(C).
    3. Raúl Allende-Montalbán & Diana Martín-Lammerding & María del Mar Delgado & Miguel A. Porcel & José L. Gabriel, 2021. "Urease Inhibitors Effects on the Nitrogen Use Efficiency in a Maize–Wheat Rotation with or without Water Deficit," Agriculture, MDPI, vol. 11(7), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tenorio, Fatima A.M. & McLellan, Eileen L. & Eagle, Alison J. & Cassman, Kenneth G. & Torrion, Jessica A. & Grassini, Patricio, 2021. "Disentangling management factors influencing nitrogen balance in producer fields in the western Corn Belt," Agricultural Systems, Elsevier, vol. 193(C).
    2. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    3. Xin Nie & Jianxian Wu & Han Wang & Weijuan Li & Chengdao Huang & Lihua Li, 2022. "Contributing to carbon peak: Estimating the causal impact of eco‐industrial parks on low‐carbon development in China," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1578-1593, August.
    4. Zhen, Wei & Qin, Quande & Miao, Lu, 2023. "The greenhouse gas rebound effect from increased energy efficiency across China's staple crops," Energy Policy, Elsevier, vol. 173(C).
    5. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    6. Jiamin Liu & Xiaoyu Ma & Bin Zhao & Qi Cui & Sisi Zhang & Jiaoning Zhang, 2023. "Mandatory Environmental Regulation, Enterprise Labor Demand and Green Innovation Transformation: A Quasi-Experiment from China’s New Environmental Protection Law," Sustainability, MDPI, vol. 15(14), pages 1-31, July.
    7. Otavio Ananias Pereira da Silva & Dayane Bortoloto da Silva & Marcelo Carvalho Minhoto Teixeira-Filho & Tays Batista Silva & Cid Naudi Silva Campos & Fabio Henrique Rojo Baio & Gileno Brito de Azevedo, 2023. "Macro- and Micronutrient Contents and Their Relationship with Growth in Six Eucalyptus Species," Sustainability, MDPI, vol. 15(22), pages 1-12, November.
    8. David I. Stern, 2017. "The environmental Kuznets curve after 25 years," Journal of Bioeconomics, Springer, vol. 19(1), pages 7-28, April.
    9. Anna Lungarska & Thierry Brunelle & Raja Chakir & Pierre‐Alain Jayet & Rémi Prudhomme & Stéphane De Cara & Jean‐Christophe Bureau, 2023. "Halving mineral nitrogen use in European agriculture: Insights from multi‐scale land‐use models," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 45(3), pages 1529-1550, September.
    10. Jiuliang Xu & Liangquan Wu & Bingxin Tong & Jiaxu Yin & Zican Huang & Wei Li & Xuexian Li, 2021. "Magnesium Supplementation Alters Leaf Metabolic Pathways for Higher Flavor Quality of Oolong Tea," Agriculture, MDPI, vol. 11(2), pages 1-12, February.
    11. Jun Li & Jiali Xing & Rui Ding & Wenjiao Shi & Xiaoli Shi & Xiaoqing Wang, 2023. "Systematic Evaluation of Nitrogen Application in the Production of Multiple Crops and Its Environmental Impacts in Fujian Province, China," Agriculture, MDPI, vol. 13(3), pages 1-17, March.
    12. Qian Wu & Chencheng Dai & Fanxu Meng & Yan Jiao & Zhichuan J. Xu, 2024. "Potential and electric double-layer effect in electrocatalytic urea synthesis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Purushothaman Chirakkuzhyil Abhilash, 2021. "Restoring the Unrestored: Strategies for Restoring Global Land during the UN Decade on Ecosystem Restoration (UN-DER)," Land, MDPI, vol. 10(2), pages 1-19, February.
    14. Madhu Khanna & Shady S. Atallah & Saurajyoti Kar & Bijay Sharma & Linghui Wu & Chengzheng Yu & Girish Chowdhary & Chinmay Soman & Kaiyu Guan, 2022. "Digital transformation for a sustainable agriculture in the United States: Opportunities and challenges," Agricultural Economics, International Association of Agricultural Economists, vol. 53(6), pages 924-937, November.
    15. Wang, Mengru & Ma, Lin & Strokal, Maryna & Chu, Yanan & Kroeze, Carolien, 2018. "Exploring nutrient management options to increase nitrogen and phosphorus use efficiencies in food production of China," Agricultural Systems, Elsevier, vol. 163(C), pages 58-72.
    16. Luncheng You & Gerard H. Ros & Yongliang Chen & Qi Shao & Madaline D. Young & Fusuo Zhang & Wim de Vries, 2023. "Global mean nitrogen recovery efficiency in croplands can be enhanced by optimal nutrient, crop and soil management practices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Zhuang, Minghao & Liu, Yize & Yang, Yi & Zhang, Qingsong & Ying, Hao & Yin, Yulong & Cui, Zhenling, 2022. "The sustainability of staple crops in China can be substantially improved through localized strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    18. Yongqiang Zhang & Hao Sun & Maosheng Ge & Hang Zhao & Yifan Hu & Changyue Cui & Zhibin Wu, 2023. "Difference in Energy Input and Output in Agricultural Production under Surface Irrigation and Water-Saving Irrigation: A Case Study of Kiwi Fruit in Shaanxi," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    19. Maity, Shrabanti & Sinha, Anup & Kumar Rath, Mithun & Rummana Barlaskar, Ummey, 2023. "Resource Use Efficiency and Cleaner Agricultural Production: An Application of Technical Inefficiency Effects Model for Paddy Producing Zones of West Bengal," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 15(2), June.
    20. Xiao, Xuechen & Zang, Hecang & Liu, Yang & Zhang, Zhen & Liu, Ying & Ejaz, Irsa & Du, Chenghang & Wang, Zhimin & Sun, Zhencai & Zhang, Yinghua, 2023. "Promoting winter wheat sustainable intensification by higher nitrogen distribution in top second to fourth leaves under water-restricted condition in North China Plain," Agricultural Water Management, Elsevier, vol. 289(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:4:p:478-:d:781972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.