IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i9p830-d625757.html
   My bibliography  Save this article

Full-Season Cover Crops and Their Traits That Promote Agroecosystem Services

Author

Listed:
  • Cameron Wagg

    (Fredericton Research and Development Center, Agriculture and Agri-Food Canada, 850 Lincoln Rd., Fredericton, NB E3B 4Z7, Canada)

  • Aafke van Erk

    (Fredericton Research and Development Center, Agriculture and Agri-Food Canada, 850 Lincoln Rd., Fredericton, NB E3B 4Z7, Canada
    Potatoes New Brunswick, 777 Everard H Daigle Boul, Grand Falls, NB E3Z 3C7, Canada)

  • Erica Fava

    (Fredericton Research and Development Center, Agriculture and Agri-Food Canada, 850 Lincoln Rd., Fredericton, NB E3B 4Z7, Canada)

  • Louis-Pierre Comeau

    (Fredericton Research and Development Center, Agriculture and Agri-Food Canada, 850 Lincoln Rd., Fredericton, NB E3B 4Z7, Canada)

  • T. Fatima Mitterboeck

    (Fredericton Research and Development Center, Agriculture and Agri-Food Canada, 850 Lincoln Rd., Fredericton, NB E3B 4Z7, Canada)

  • Claudia Goyer

    (Fredericton Research and Development Center, Agriculture and Agri-Food Canada, 850 Lincoln Rd., Fredericton, NB E3B 4Z7, Canada)

  • Sheng Li

    (Fredericton Research and Development Center, Agriculture and Agri-Food Canada, 850 Lincoln Rd., Fredericton, NB E3B 4Z7, Canada)

  • Andrew McKenzie-Gopsill

    (Charlottetown Research and Development Center, Agriculture and Agri-Food Canada, 440 University Ave, Charlottetown, PE C1A 7Z5, Canada)

  • Aaron Mills

    (Charlottetown Research and Development Center, Agriculture and Agri-Food Canada, 440 University Ave, Charlottetown, PE C1A 7Z5, Canada)

Abstract

Non-marketable crops are increasingly being used as a tool to promote agroecosystem services and sustainable agriculture. Nevertheless, crops vary greatly in the traits by which they capture resources and influence the local ecosystem. Here we report on the traits and associated soil microbial communities that relate to aboveground biomass production, nutrient capture, weed suppression, erosion control and building particulate organic matter of 22 different full-season cover crops. All agroecosystem services were positively correlated with maximum canopy height and leaf area. Rooting density was positively associated with indices of bacterial diversity. While some legumes produced the greatest standing N and P in aboveground biomass, they were also poor at capturing soil nitrate and promoted high levels of potential plant fungal pathogens. Conversely, Brassicaceae crops had the lowest levels of potential plant fungal pathogens, but also suppressed saprophytic fungi and rhizobia. Thus, not all crops are equal in their ability to promote all agroecosystem services, and while some crops may be ideal for promoting a specific agroecosystem service, this could result in a trade-off with another. Nonetheless, our study demonstrates that plant functional traits are informative for the selection of crops for promoting agroecosystem services.

Suggested Citation

  • Cameron Wagg & Aafke van Erk & Erica Fava & Louis-Pierre Comeau & T. Fatima Mitterboeck & Claudia Goyer & Sheng Li & Andrew McKenzie-Gopsill & Aaron Mills, 2021. "Full-Season Cover Crops and Their Traits That Promote Agroecosystem Services," Agriculture, MDPI, vol. 11(9), pages 1-26, August.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:9:p:830-:d:625757
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/9/830/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/9/830/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andreas Schuldt & Anne Ebeling & Matthias Kunz & Michael Staab & Claudia Guimarães-Steinicke & Dörte Bachmann & Nina Buchmann & Walter Durka & Andreas Fichtner & Felix Fornoff & Werner Härdtle & Lione, 2019. "Multiple plant diversity components drive consumer communities across ecosystems," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    2. Hélène Tribouillois & Florian Fort & Pablo Cruz & Raphaël Charles & Olivier Flores & Eric Garnier & Eric Justes, 2015. "A Functional Characterisation of a Wide Range of Cover Crop Species: Growth and Nitrogen Acquisition Rates, Leaf Traits and Ecological Strategies," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-17, March.
    3. Cameron Wagg & Klaus Schlaeppi & Samiran Banerjee & Eiko E. Kuramae & Marcel G. A. Heijden, 2019. "Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    4. Paul J McMurdie & Susan Holmes, 2014. "Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-12, April.
    5. Maartje A. H. J. van Kessel & Daan R. Speth & Mads Albertsen & Per H. Nielsen & Huub J. M. Op den Camp & Boran Kartal & Mike S. M. Jetten & Sebastian Lücker, 2015. "Complete nitrification by a single microorganism," Nature, Nature, vol. 528(7583), pages 555-559, December.
    6. Timothy E. Crews & Brian E. Rumsey, 2017. "What Agriculture Can Learn from Native Ecosystems in Building Soil Organic Matter: A Review," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    7. Zhang, Wei & Ricketts, Taylor H. & Kremen, Claire & Carney, Karen & Swinton, Scott M., 2007. "Ecosystem services and dis-services to agriculture," Ecological Economics, Elsevier, vol. 64(2), pages 253-260, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ravjit Khangura & David Ferris & Cameron Wagg & Jamie Bowyer, 2023. "Regenerative Agriculture—A Literature Review on the Practices and Mechanisms Used to Improve Soil Health," Sustainability, MDPI, vol. 15(3), pages 1-41, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brandon Schlautman & Spencer Barriball & Claudia Ciotir & Sterling Herron & Allison J. Miller, 2018. "Perennial Grain Legume Domestication Phase I: Criteria for Candidate Species Selection," Sustainability, MDPI, vol. 10(3), pages 1-23, March.
    2. Vermunt, D.A. & Wojtynia, N. & Hekkert, M.P. & Van Dijk, J. & Verburg, R. & Verweij, P.A. & Wassen, M. & Runhaar, H., 2022. "Five mechanisms blocking the transition towards ‘nature-inclusive’ agriculture: A systemic analysis of Dutch dairy farming," Agricultural Systems, Elsevier, vol. 195(C).
    3. Aaron C Ericsson & J Wade Davis & William Spollen & Nathan Bivens & Scott Givan & Catherine E Hagan & Mark McIntosh & Craig L Franklin, 2015. "Effects of Vendor and Genetic Background on the Composition of the Fecal Microbiota of Inbred Mice," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-19, February.
    4. Elisa Morri & Riccardo Santolini, 2021. "Ecosystem Services Valuation for the Sustainable Land Use Management by Nature-Based Solution (NbS) in the Common Agricultural Policy Actions: A Case Study on the Foglia River Basin (Marche Region, It," Land, MDPI, vol. 11(1), pages 1-23, December.
    5. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.
    6. Duo Jiang & Thomas Sharpton & Yuan Jiang, 2021. "Microbial Interaction Network Estimation via Bias-Corrected Graphical Lasso," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(2), pages 329-350, July.
    7. Shah, Syed Mahboob & Liu, Gengyuan & Yang, Qing & Casazza, Marco & Agostinho, Feni & Giannetti, Biagio F., 2021. "Sustainability assessment of agriculture production systems in Pakistan: A provincial-scale energy-based evaluation," Ecological Modelling, Elsevier, vol. 455(C).
    8. Timothy E. Crews & Douglas J. Cattani, 2018. "Strategies, Advances, and Challenges in Breeding Perennial Grain Crops," Sustainability, MDPI, vol. 10(7), pages 1-7, June.
    9. Fantin Mesny & Shingo Miyauchi & Thorsten Thiergart & Brigitte Pickel & Lea Atanasova & Magnus Karlsson & Bruno Hüttel & Kerrie W. Barry & Sajeet Haridas & Cindy Chen & Diane Bauer & William Andreopou, 2021. "Genetic determinants of endophytism in the Arabidopsis root mycobiome," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    10. Mark A. Anthony & Leho Tedersoo & Bruno Vos & Luc Croisé & Henning Meesenburg & Markus Wagner & Henning Andreae & Frank Jacob & Paweł Lech & Anna Kowalska & Martin Greve & Genoveva Popova & Beat Frey , 2024. "Fungal community composition predicts forest carbon storage at a continental scale," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Jónsson, Jón Örvar G. & Davíðsdóttir, Brynhildur & Nikolaidis, Nikolaos P. & Giannakis, Georgios V., 2019. "Tools for Sustainable Soil Management: Soil Ecosystem Services, EROI and Economic Analysis," Ecological Economics, Elsevier, vol. 157(C), pages 109-119.
    12. Abid Ali Ansari & Zahid Hameed Siddiqui & Fuad A. Alatawi & Basmah M. Alharbi & Amenah S. Alotaibi, 2022. "An Assessment of Biodiversity in Tabuk Region of Saudi Arabia: A Comprehensive Review," Sustainability, MDPI, vol. 14(17), pages 1-29, August.
    13. Shilan Li & Jianxin Shi & Paul Albert & Hong-Bin Fang, 2022. "Dependence Structure Analysis and Its Application in Human Microbiome," Mathematics, MDPI, vol. 11(1), pages 1-14, December.
    14. Ehsan Moradi & Jesús Rodrigo-Comino & Enric Terol & Gaspar Mora-Navarro & Alexandre Marco da Silva & Ioannis N. Daliakopoulos & Hassan Khosravi & Manuel Pulido Fernández & Artemi Cerdà, 2020. "Quantifying Soil Compaction in Persimmon Orchards Using ISUM (Improved Stock Unearthing Method) and Core Sampling Methods," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    15. Ileana Pătru-Stupariu & Andreea Ionescu & Radu Tudor & Alin-Ionuț Pleșoianu & Mioara Clius, 2022. "Online Environment as a Tool to Push Forward the Research: An Example for Landscape Disservices," Land, MDPI, vol. 11(2), pages 1-10, February.
    16. Carmen Schwartz & Mostafa Shaaban & Sonoko Dorothea Bellingrath-Kimura & Annette Piorr, 2021. "Participatory Mapping of Demand for Ecosystem Services in Agricultural Landscapes," Agriculture, MDPI, vol. 11(12), pages 1-20, November.
    17. Kovacs, Kent F. & Wailes, Eric & West, Grant & Popp, Jennie & Bektemirov, Kuatbay, 2014. "Optimal Spatial-Dynamic Management of Groundwater Conservation and Surface Water Quality with On-Farm Reservoirs," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 46(4), pages 1-28, November.
    18. Khalid Awadh Al-Mutairi, 2022. "Do Spatially Structured Soil Variables Influence the Plant Diversity in Tabuk Arid Region, Saudi Arabia?," Sustainability, MDPI, vol. 14(5), pages 1-11, February.
    19. M. McCauley & T. L. Goulet & C. R. Jackson & S. Loesgen, 2023. "Systematic review of cnidarian microbiomes reveals insights into the structure, specificity, and fidelity of marine associations," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    20. Ethan Gordon & Federico Davila & Chris Riedy, 2022. "Transforming landscapes and mindscapes through regenerative agriculture," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(2), pages 809-826, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:9:p:830-:d:625757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.