IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i11p1130-d676749.html
   My bibliography  Save this article

Assessment of Composted Pelletized Poultry Litter as an Alternative to Chemical Fertilizers Based on the Environmental Impact of Their Production

Author

Listed:
  • Nikolett Éva Kiss

    (Institute of Water and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary)

  • János Tamás

    (Institute of Water and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary)

  • Nikolett Szőllősi

    (Institute of Water and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary)

  • Edit Gorliczay

    (Institute of Water and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary)

  • Attila Nagy

    (Institute of Water and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary)

Abstract

Reducing the use of chemical fertilizers in agriculture is one of the EU Green Deal’s priorities. Since poultry production is increasing worldwide, stabilized poultry litter such as composted pelletized poultry litter (CPPL) is an alternative fertilizer option. On the contrary, compared to chemical fertilizers, the environmental impacts of composted products have not been adequately studied, and no data are currently available for CPPL produced by a closed composting system, such as the Hosoya system. The aim of this research was to assess the role of CPPL as a potential alternative for chemical fertilizer by evaluating the environmental impact of CPPL production via the Hosoya system using common chemical fertilizers. Based on life cycle assessment (LCA), the environmental impact (11 impact categories) was determined for the production of 1 kg of fertilizer, as well as for the production of 1 kg of active substances (nitrogen (N), phosphorus pentoxide (P 2 O 5 ), and potassium chloride (K 2 O)) and the theoretical nutrient (NPK) supply of a 100 ha field with CPPL and several chemical fertilizer options. The production of CPPL per kilogram was smaller than that of the chemical fertilizers; however, the environmental impact of chemical fertilizer production per kilogram of active substance (N, P 2 O 5 , or K 2 O) was lower for most impact categories, because the active substance was available at higher concentrations in said chemical fertilizers. In contrast, the NPK supply of a 100 ha field by CPPL was found to possess a smaller environmental impact compared to several combinations of chemical fertilizers. In conclusion, CPPL demonstrated its suitability as an alternative to chemical fertilizers.

Suggested Citation

  • Nikolett Éva Kiss & János Tamás & Nikolett Szőllősi & Edit Gorliczay & Attila Nagy, 2021. "Assessment of Composted Pelletized Poultry Litter as an Alternative to Chemical Fertilizers Based on the Environmental Impact of Their Production," Agriculture, MDPI, vol. 11(11), pages 1-18, November.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:11:p:1130-:d:676749
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/11/1130/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/11/1130/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edit Gorliczay & Imre Boczonádi & Nikolett Éva Kiss & Florence Alexandra Tóth & Sándor Attila Pabar & Borbála Biró & László Renátó Kovács & János Tamás, 2021. "Microbiological Effectivity Evaluation of New Poultry Farming Organic Waste Recycling," Agriculture, MDPI, vol. 11(7), pages 1-21, July.
    2. Kabakian, V. & McManus, M.C. & Harajli, H., 2015. "Attributional life cycle assessment of mounted 1.8kWp monocrystalline photovoltaic system with batteries and comparison with fossil energy production system," Applied Energy, Elsevier, vol. 154(C), pages 428-437.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. István Komlósi, 2022. "Recent Advancements in Poultry Health, Nutrition and Sustainability," Agriculture, MDPI, vol. 12(4), pages 1-2, April.
    2. Viktoria Mannheim & Judit Lovasné Avató, 2023. "Life-Cycle Assessments of Meat-Free and Meat-Containing Diets by Integrating Sustainability and Lean: Meat-Free Dishes Are Sustainable," Sustainability, MDPI, vol. 15(15), pages 1-24, August.
    3. Wendy M. Rauw & Luis Gomez‐Raya & Laura Star & Margareth Øverland & Evelyne Delezie & Mikelis Grivins & Karen T. Hamann & Marco Pietropaoli & Michiel T. Klaassen & Gunnar Klemetsdal & María G. Gil & O, 2023. "Sustainable development in circular agriculture: An illustrative bee↺legume↺poultry example," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 639-648, April.
    4. Judit Lovasné Avató & Viktoria Mannheim, 2022. "Life Cycle Assessment Model of a Catering Product: Comparing Environmental Impacts for Different End-of-Life Scenarios," Energies, MDPI, vol. 15(15), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. István Komlósi, 2022. "Recent Advancements in Poultry Health, Nutrition and Sustainability," Agriculture, MDPI, vol. 12(4), pages 1-2, April.
    2. Nadia Belmonte & Carlo Luetto & Stefano Staulo & Paola Rizzi & Marcello Baricco, 2017. "Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Applications," Challenges, MDPI, vol. 8(1), pages 1-15, March.
    3. Mahmud, M. A. Parvez & Huda, Nazmul & Farjana, Shahjadi Hisan & Lang, Candace, 2019. "A strategic impact assessment of hydropower plants in alpine and non-alpine areas of Europe," Applied Energy, Elsevier, vol. 250(C), pages 198-214.
    4. Troy, Stefanie & Schreiber, Andrea & Reppert, Thorsten & Gehrke, Hans-Gregor & Finsterbusch, Martin & Uhlenbruck, Sven & Stenzel, Peter, 2016. "Life Cycle Assessment and resource analysis of all-solid-state batteries," Applied Energy, Elsevier, vol. 169(C), pages 757-767.
    5. Mahmud, M.A. Parvez & Huda, Nazmul & Farjana, Shahjadi Hisan & Lang, Candace, 2020. "Life-cycle impact assessment of renewable electricity generation systems in the United States," Renewable Energy, Elsevier, vol. 151(C), pages 1028-1045.
    6. Koppelaar, R.H.E.M., 2017. "Solar-PV energy payback and net energy: Meta-assessment of study quality, reproducibility, and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1241-1255.
    7. Aberilla, Jhud Mikhail & Gallego-Schmid, Alejandro & Stamford, Laurence & Azapagic, Adisa, 2020. "Design and environmental sustainability assessment of small-scale off-grid energy systems for remote rural communities," Applied Energy, Elsevier, vol. 258(C).
    8. Miller, Ian & Gençer, Emre & Vogelbaum, Hilary S. & Brown, Patrick R. & Torkamani, Sarah & O'Sullivan, Francis M., 2019. "Parametric modeling of life cycle greenhouse gas emissions from photovoltaic power," Applied Energy, Elsevier, vol. 238(C), pages 760-774.
    9. Chatzisideris, Marios D. & Ohms, Pernille K. & Espinosa, Nieves & Krebs, Frederik C. & Laurent, Alexis, 2019. "Economic and environmental performances of organic photovoltaics with battery storage for residential self-consumption," Applied Energy, Elsevier, vol. 256(C).
    10. Li, Guiqiang & Xuan, Qingdong & Pei, Gang & Su, Yuehong & Lu, Yashun & Ji, Jie, 2018. "Life-cycle assessment of a low-concentration PV module for building south wall integration in China," Applied Energy, Elsevier, vol. 215(C), pages 174-185.
    11. Kourkoumpas, Dimitrios-Sotirios & Benekos, Georgios & Nikolopoulos, Nikolaos & Karellas, Sotirios & Grammelis, Panagiotis & Kakaras, Emmanouel, 2018. "A review of key environmental and energy performance indicators for the case of renewable energy systems when integrated with storage solutions," Applied Energy, Elsevier, vol. 231(C), pages 380-398.
    12. Ravikumar, Dwarakanath & Wender, Ben & Seager, Thomas P. & Fraser, Matthew P. & Tao, Meng, 2017. "A climate rationale for research and development on photovoltaics manufacture," Applied Energy, Elsevier, vol. 189(C), pages 245-256.
    13. Márk Szuhaj & Roland Wirth & Zoltán Bagi & Gergely Maróti & Gábor Rákhely & Kornél L. Kovács, 2021. "Development of Stable Mixed Microbiota for High Yield Power to Methane Conversion," Energies, MDPI, vol. 14(21), pages 1-17, November.
    14. Bahlawan, Hilal & Morini, Mirko & Pinelli, Michele & Poganietz, Witold-Roger & Spina, Pier Ruggero & Venturini, Mauro, 2019. "Optimization of a hybrid energy plant by integrating the cumulative energy demand," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Comodi, Gabriele & Bevilacqua, Maurizio & Caresana, Flavio & Paciarotti, Claudia & Pelagalli, Leonardo & Venella, Paola, 2016. "Life cycle assessment and energy-CO2-economic payback analyses of renewable domestic hot water systems with unglazed and glazed solar thermal panels," Applied Energy, Elsevier, vol. 164(C), pages 944-955.
    16. Ortega-Arriaga, P. & Babacan, O. & Nelson, J. & Gambhir, A., 2021. "Grid versus off-grid electricity access options: A review on the economic and environmental impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    17. Federico Rossi & Maria Laura Parisi & Sarah Greven & Riccardo Basosi & Adalgisa Sinicropi, 2020. "Life Cycle Assessment of Classic and Innovative Batteries for Solar Home Systems in Europe," Energies, MDPI, vol. 13(13), pages 1-27, July.
    18. Yu, Zhiqiang & Ma, Wenhui & Xie, Keqiang & Lv, Guoqiang & Chen, Zhengjie & Wu, Jijun & Yu, Jie, 2017. "Life cycle assessment of grid-connected power generation from metallurgical route multi-crystalline silicon photovoltaic system in China," Applied Energy, Elsevier, vol. 185(P1), pages 68-81.
    19. Harajli, H. & Kabakian, V. & El-Baba, J. & Diab, A. & Nassab, C., 2020. "Commercial-scale hybrid solar photovoltaic - diesel systems in select Arab countries with weak grids: An integrated appraisal," Energy Policy, Elsevier, vol. 137(C).
    20. Susan Isaya Sun & Andrew Frederick Crossland & Andrew John Chipperfield & Richard George Andrew Wills, 2019. "An Emissions Arbitrage Algorithm to Improve the Environmental Performance of Domestic PV-Battery Systems," Energies, MDPI, vol. 12(3), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:11:p:1130-:d:676749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.