IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i7p683-d597156.html
   My bibliography  Save this article

Microbiological Effectivity Evaluation of New Poultry Farming Organic Waste Recycling

Author

Listed:
  • Edit Gorliczay

    (Institute of Water and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary)

  • Imre Boczonádi

    (Institute of Water and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary)

  • Nikolett Éva Kiss

    (Institute of Water and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary)

  • Florence Alexandra Tóth

    (Institute of Water and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary)

  • Sándor Attila Pabar

    (Department of Agri-Environmental Sciences, Szent Istvan University, 1118 Budapest, Hungary)

  • Borbála Biró

    (Department of Agri-Environmental Sciences, Szent Istvan University, 1118 Budapest, Hungary)

  • László Renátó Kovács

    (Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
    Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary)

  • János Tamás

    (Institute of Water and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary)

Abstract

Due to the intensification of the poultry sector, poultry manure is being produced in increasing quantities, and its on-site management is becoming a critical problem. Animal health problems can be solved by stricter the veterinary and environmental standards. The off-site coupled industrial chicken manure recycling technology (Hosoya compost tea) fundamentally affects the agricultural value of new organic-based products. Due to the limited information available on manure recycling technology-related microbiological changes, this was examined in this study. A pot experiment with a pepper test plant was set up, using two different soils (Arenosol, slightly humous Arenosol) and two different doses (irrigation once a week with 40 mL of compost tea: dose 1, D1; irrigation twice a week with 40 mL of compost tea: dose 2, D2) of compost tea. Compost tea raw materials, compost tea, and compost tea treated soils were tested. The products (granulated manure, compost tea) and their effects were characterized by the following parameters: aerobic bacterial count (log CFU/g), fluorescein diacetate activity (3′,6′-diacetylfluorescein, FDA, µg Fl/g soil), glucosidase enzyme activity (GlA; PNP/µmol/g), and identification of microorganisms in compost tea with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Furthermore, we aimed to investigate how the microbiological indicators tested, and the effect of compost tea on the tested plant, could be interpreted. Based on our results, the microbiological characteristics of the treated soils showed an increase in enzyme activity, in the case of FDA an increase +0.26 μg Fl/g soil at D1, while the GlA increased +1.28 PNP/µmol/g with slightly humous Arenosol soil and increased +2.44 PNP/µmol/g at D1; and the aerobic bacterial count increased +0.15 log CFU/g at D2, +0.35 log CFU/g with slightly humous Arenosol and +0.85 log CFU/g at W8. MALDI-TOF MS results showed that the dominant bacterial genera analyzed were Bacillus sp., Lysinibacillus sp., and Pseudomonas sp. Overall, the microbial inducers we investigated could be a good alternative for evaluating the effects of compost solutions in soil–plant systems. In both soil types, the total chlorophyll content of compost tea-treated pepper ( Capsicum annuum L.) had increased as a result of compost tea. D1 is recommended for Arenosol and, D2 for slightly humous Arenosol soil.

Suggested Citation

  • Edit Gorliczay & Imre Boczonádi & Nikolett Éva Kiss & Florence Alexandra Tóth & Sándor Attila Pabar & Borbála Biró & László Renátó Kovács & János Tamás, 2021. "Microbiological Effectivity Evaluation of New Poultry Farming Organic Waste Recycling," Agriculture, MDPI, vol. 11(7), pages 1-21, July.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:7:p:683-:d:597156
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/7/683/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/7/683/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao Chen & Xiuping Jiang, 2014. "Microbiological Safety of Chicken Litter or Chicken Litter-Based Organic Fertilizers: A Review," Agriculture, MDPI, vol. 4(1), pages 1-29, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. István Komlósi, 2022. "Recent Advancements in Poultry Health, Nutrition and Sustainability," Agriculture, MDPI, vol. 12(4), pages 1-2, April.
    2. Nikolett Éva Kiss & János Tamás & Nikolett Szőllősi & Edit Gorliczay & Attila Nagy, 2021. "Assessment of Composted Pelletized Poultry Litter as an Alternative to Chemical Fertilizers Based on the Environmental Impact of Their Production," Agriculture, MDPI, vol. 11(11), pages 1-18, November.
    3. Márk Szuhaj & Roland Wirth & Zoltán Bagi & Gergely Maróti & Gábor Rákhely & Kornél L. Kovács, 2021. "Development of Stable Mixed Microbiota for High Yield Power to Methane Conversion," Energies, MDPI, vol. 14(21), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana Sofia Soares & Carla Miranda & Ana Claudia Coelho & Henrique Trindade, 2023. "Occurrence of Coliforms and Enterococcus Species in Drinking Water Samples Obtained from Selected Dairy Cattle Farms in Portugal," Agriculture, MDPI, vol. 13(4), pages 1-10, April.
    2. Awasthi, Mukesh Kumar & Sarsaiya, Surendra & Wainaina, Steven & Rajendran, Karthik & Kumar, Sumit & Quan, Wang & Duan, Yumin & Awasthi, Sanjeev Kumar & Chen, Hongyu & Pandey, Ashok & Zhang, Zengqiang , 2019. "A critical review of organic manure biorefinery models toward sustainable circular bioeconomy: Technological challenges, advancements, innovations, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 115-131.
    3. Muthu Manikandan & Sechul Chun & Zakayo Kazibwe & Judy Gopal & Udai Bhan Singh & Jae-Wook Oh, 2020. "Phenomenal Bombardment of Antibiotic in Poultry: Contemplating the Environmental Repercussions," IJERPH, MDPI, vol. 17(14), pages 1-15, July.
    4. David Fangueiro & Paula Alvarenga & Rita Fragoso, 2021. "Horticulture and Orchards as New Markets for Manure Valorisation with Less Environmental Impacts," Sustainability, MDPI, vol. 13(3), pages 1-28, January.
    5. Xuanyang Li & Baoming Li & Qin Tong, 2020. "The Effect of Drying Temperature on Nitrogen Loss and Pathogen Removal in Laying Hen Manure," Sustainability, MDPI, vol. 12(1), pages 1-11, January.
    6. Margaret Kyakuwaire & Giregon Olupot & Alice Amoding & Peter Nkedi-Kizza & Twaha Ateenyi Basamba, 2019. "How Safe is Chicken Litter for Land Application as an Organic Fertilizer?: A Review," IJERPH, MDPI, vol. 16(19), pages 1-23, September.
    7. Christy E. Manyi-Loh & Sampson N. Mamphweli & Edson L. Meyer & Golden Makaka & Michael Simon & Anthony I. Okoh, 2016. "An Overview of the Control of Bacterial Pathogens in Cattle Manure," IJERPH, MDPI, vol. 13(9), pages 1-27, August.
    8. Bi, Shaojie & Qiao, Wei & Xiong, Linpeng & Ricci, Marina & Adani, Fabrizio & Dong, Renjie, 2019. "Effects of organic loading rate on anaerobic digestion of chicken manure under mesophilic and thermophilic conditions," Renewable Energy, Elsevier, vol. 139(C), pages 242-250.
    9. Karina Yévenes & Ekaterina Pokrant & Fernando Pérez & Ricardo Riquelme & Constanza Avello & Aldo Maddaleno & Betty San Martín & Javiera Cornejo, 2018. "Assessment of Three Antimicrobial Residue Concentrations in Broiler Chicken Droppings as a Potential Risk Factor for Public Health and Environment," IJERPH, MDPI, vol. 16(1), pages 1-13, December.
    10. Izabella Maj, 2022. "Significance and Challenges of Poultry Litter and Cattle Manure as Sustainable Fuels: A Review," Energies, MDPI, vol. 15(23), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:7:p:683-:d:597156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.