IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i11p4976-d1666850.html
   My bibliography  Save this article

Utilization of Poultry Manure After Biological Deactivation and Incineration to Enhance the Quality of Degraded Soils

Author

Listed:
  • Magdalena Cempa

    (Department of Environmental Monitoring, Central Mining Institute-National Research Institute, Plac Gwarków 1, 40-166 Katowice, Poland)

  • Angelika Więckol-Ryk

    (Department of Extraction Technologies, Rockburst and Risk Assessment, Central Mining Institute-National Research Institute, Plac Gwarków 1, 40-166 Katowice, Poland)

  • Maciej Thomas

    (Faculty of Environmental Engineering and Energy, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland)

  • Barbara Białecka

    (Department of Environmental Monitoring, Central Mining Institute-National Research Institute, Plac Gwarków 1, 40-166 Katowice, Poland)

Abstract

Treating poultry manure with calcium compounds is the primary technique for inactivating toxic pathogens such as bacteria, fungi, or viruses and decreasing the risk of biological contaminant release into the environment. On the other hand, the preferable method for reducing its volume is incineration with the aim of obtaining highly concentrated fertilizer. This paper presents the optimization of the biological deactivation of fresh poultry manure using calcium hydroxide via central composite design and response surface methodology. The results revealed that the optimum parameters required to decrease the number of E. coli bacteria to below the acceptable level (1000 CFU/g) were 5.0 wt% Ca(OH) 2 at 22 °C and an exposure time of 209 h. A regression analysis showed a good fit of the approximated parameters to the experimental data (R 2 = 98%, R adj. 2 = 97%). Additionally, laboratory tests involving ash samples obtained from the incineration of poultry manure with the addition of 5 wt% calcium hydroxide (T = 500 °C, t = 5 h) intended as a fertilizer for degraded soils were performed. The analysis revealed that the content of pure manure ash in the sample incinerated with Ca(OH) 2 was approximately 47.5%. An X-ray diffraction analysis of the ash sample revealed that the main crystalline component was calcite (67.5 wt% CaCO 3 ), the phases containing phosphorus were apatite (3 wt%) and hydroxyapatite (3 wt%), whereas the source of the bioavailable form of phosphorus was the amorphous phase (15.5 wt%). An analysis of the ash extracts in a 2% citric acid solution revealed that the phosphorus concentration (287 mg/L) was two times lower than that of potassium (661 mg/L). The best results of phytotoxicity tests with Sinapis alba were obtained for soils containing no more than 1.0 wt% ash with calcium hydroxide.

Suggested Citation

  • Magdalena Cempa & Angelika Więckol-Ryk & Maciej Thomas & Barbara Białecka, 2025. "Utilization of Poultry Manure After Biological Deactivation and Incineration to Enhance the Quality of Degraded Soils," Sustainability, MDPI, vol. 17(11), pages 1-24, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:4976-:d:1666850
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/11/4976/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/11/4976/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao Chen & Xiuping Jiang, 2014. "Microbiological Safety of Chicken Litter or Chicken Litter-Based Organic Fertilizers: A Review," Agriculture, MDPI, vol. 4(1), pages 1-29, January.
    2. Margaret Kyakuwaire & Giregon Olupot & Alice Amoding & Peter Nkedi-Kizza & Twaha Ateenyi Basamba, 2019. "How Safe is Chicken Litter for Land Application as an Organic Fertilizer?: A Review," IJERPH, MDPI, vol. 16(19), pages 1-23, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muthu Manikandan & Sechul Chun & Zakayo Kazibwe & Judy Gopal & Udai Bhan Singh & Jae-Wook Oh, 2020. "Phenomenal Bombardment of Antibiotic in Poultry: Contemplating the Environmental Repercussions," IJERPH, MDPI, vol. 17(14), pages 1-15, July.
    2. Ana Sofia Soares & Carla Miranda & Ana Claudia Coelho & Henrique Trindade, 2023. "Occurrence of Coliforms and Enterococcus Species in Drinking Water Samples Obtained from Selected Dairy Cattle Farms in Portugal," Agriculture, MDPI, vol. 13(4), pages 1-10, April.
    3. Daabo, Ahmed M. & Saeed, Liqaa I. & Altamer, Marwa H. & Fadhil, Abdelrahman B. & Badawy, Tawfik, 2022. "The production of bio-based fuels and carbon catalysts from chicken waste," Renewable Energy, Elsevier, vol. 201(P1), pages 21-34.
    4. Awasthi, Mukesh Kumar & Sarsaiya, Surendra & Wainaina, Steven & Rajendran, Karthik & Kumar, Sumit & Quan, Wang & Duan, Yumin & Awasthi, Sanjeev Kumar & Chen, Hongyu & Pandey, Ashok & Zhang, Zengqiang , 2019. "A critical review of organic manure biorefinery models toward sustainable circular bioeconomy: Technological challenges, advancements, innovations, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 115-131.
    5. Paula Rogovski & Raphael da Silva & Rafael Dorighello Cadamuro & Estêvão Brasiliense de Souza & Beatriz Pereira Savi & Aline Viancelli & William Michelon & Deisi Cristina Tápparo & Helen Treichel & Da, 2021. "Salmonella enterica Serovar Enteritidis Control in Poultry Litter Mediated by Lytic Bacteriophage Isolated from Swine Manure," IJERPH, MDPI, vol. 18(16), pages 1-9, August.
    6. David Fangueiro & Paula Alvarenga & Rita Fragoso, 2021. "Horticulture and Orchards as New Markets for Manure Valorisation with Less Environmental Impacts," Sustainability, MDPI, vol. 13(3), pages 1-28, January.
    7. Xuanyang Li & Baoming Li & Qin Tong, 2020. "The Effect of Drying Temperature on Nitrogen Loss and Pathogen Removal in Laying Hen Manure," Sustainability, MDPI, vol. 12(1), pages 1-11, January.
    8. Margaret Kyakuwaire & Giregon Olupot & Alice Amoding & Peter Nkedi-Kizza & Twaha Ateenyi Basamba, 2019. "How Safe is Chicken Litter for Land Application as an Organic Fertilizer?: A Review," IJERPH, MDPI, vol. 16(19), pages 1-23, September.
    9. Edit Gorliczay & Imre Boczonádi & Nikolett Éva Kiss & Florence Alexandra Tóth & Sándor Attila Pabar & Borbála Biró & László Renátó Kovács & János Tamás, 2021. "Microbiological Effectivity Evaluation of New Poultry Farming Organic Waste Recycling," Agriculture, MDPI, vol. 11(7), pages 1-21, July.
    10. Christy E. Manyi-Loh & Sampson N. Mamphweli & Edson L. Meyer & Golden Makaka & Michael Simon & Anthony I. Okoh, 2016. "An Overview of the Control of Bacterial Pathogens in Cattle Manure," IJERPH, MDPI, vol. 13(9), pages 1-27, August.
    11. Alan Gutierrez & Keith R Schneider, 2022. "Survival and inactivation kinetics of Salmonella enterica serovar Typhimurium in irradiated and natural poultry litter microcosms," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-14, April.
    12. Sango Mahanty & Assa Doron & Rebecca Hamilton, 2023. "A policy and research agenda for Asia's poultry industry," Asia and the Pacific Policy Studies, Wiley Blackwell, vol. 10(1-3), pages 63-72, January.
    13. Bi, Shaojie & Qiao, Wei & Xiong, Linpeng & Ricci, Marina & Adani, Fabrizio & Dong, Renjie, 2019. "Effects of organic loading rate on anaerobic digestion of chicken manure under mesophilic and thermophilic conditions," Renewable Energy, Elsevier, vol. 139(C), pages 242-250.
    14. Karina Yévenes & Ekaterina Pokrant & Fernando Pérez & Ricardo Riquelme & Constanza Avello & Aldo Maddaleno & Betty San Martín & Javiera Cornejo, 2018. "Assessment of Three Antimicrobial Residue Concentrations in Broiler Chicken Droppings as a Potential Risk Factor for Public Health and Environment," IJERPH, MDPI, vol. 16(1), pages 1-13, December.
    15. Izabella Maj, 2022. "Significance and Challenges of Poultry Litter and Cattle Manure as Sustainable Fuels: A Review," Energies, MDPI, vol. 15(23), pages 1-17, November.
    16. Angelika Więckol-Ryk & Łukasz Pierzchała & Arkadiusz Bauerek & Alicja Krzemień, 2023. "Minimising Coal Mining’s Impact on Biodiversity: Artificial Soils for Post-Mining Land Reclamation," Sustainability, MDPI, vol. 15(12), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:4976-:d:1666850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.