IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i10p939-d645710.html
   My bibliography  Save this article

Influence of Tillage on the Mollisols Physicochemical Properties, Seed Emergence and Yield of Maize in Northeast China

Author

Listed:
  • Qiang Chen

    (Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China)

  • Xingyi Zhang

    (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China)

  • Li Sun

    (Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China)

  • Jianhua Ren

    (Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China)

  • Yaru Yuan

    (Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China)

  • Shuying Zang

    (Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China)

Abstract

Tillage practices are critical for sustaining soil quality necessary for successful crop growth and productivity, but there are only few studies for strip tillage (ST) in the Mollisols region of Northeast China at present. A long-term (≥10-year) study was carried out to investigate the influence of within the tilled row (IR) and between rows (BR) in ST (10-year), conventional tillage (CT, 14-year) and no tillage (NT, 14-year) treatments on soil physicochemical properties. Soil samples were taken in May of 2019 at 0–5, 5–10, 10–20 and 20–30 cm depths and used to analyze bulk density (BD), soil aggregate distribution and stability, and soil organic carbon (SOC). Meanwhile, our study also explored the differences in seed emergence, soil moisture, and temperature during the seed emergence period, and yield of maize ( Zea mays L.) among the different treatments. Similar soil properties were observed between ST-BR and NT, which showed they had a significantly greater BD, >0.25 mm water stable aggregate content (WR 0.25 ) (especially in the amount of >2 mm and 1–2 mm size proportion), aggregate stability, and SOC than ST-IR and CT-IR at a depth of 0–20 cm. By improving soil conditions of seedbed, ST-IR and CT-IR increased soil temperature above NT by 1.64 °C and 1.80 °C, respectively, and ST-IR had a slight greater soil moisture than CT-IR in the top 10 cm layer during the seed emergence period. Late maize seed emergence was observed NT in than ST-IR and CT-IR and the average annual yields in ST were slightly greater than NT and CT, but the differences were not significant. Our results also showed that CT-BR had a poor soil structure and lower SOC than other treatments at 0–30 cm depth. We conclude from these long-term experimental results that ST could improve soil water-heat conditions to promote seed germination, maintain soil structure, and increase the maize yield and it should be applied in the Mollisols region of Northeast China.

Suggested Citation

  • Qiang Chen & Xingyi Zhang & Li Sun & Jianhua Ren & Yaru Yuan & Shuying Zang, 2021. "Influence of Tillage on the Mollisols Physicochemical Properties, Seed Emergence and Yield of Maize in Northeast China," Agriculture, MDPI, vol. 11(10), pages 1-13, September.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:10:p:939-:d:645710
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/10/939/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/10/939/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cameron M. Pittelkow & Xinqiang Liang & Bruce A. Linquist & Kees Jan van Groenigen & Juhwan Lee & Mark E. Lundy & Natasja van Gestel & Johan Six & Rodney T. Venterea & Chris van Kessel, 2015. "Productivity limits and potentials of the principles of conservation agriculture," Nature, Nature, vol. 517(7534), pages 365-368, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chaosu Li & Ming Li & Tao Xiong & Hongkun Yang & Xiaoqin Peng & Yong Wang & Haiyan Qin & Haojie Li & Yonglu Tang & Gaoqiong Fan, 2024. "Strip Tillage Improves Productivity of Direct-Seeded Oilseed Rape ( Brassica napus ) in Rice–Oilseed Rape Rotation Systems," Agriculture, MDPI, vol. 14(8), pages 1-11, August.
    2. Felicia Chețan & Cornel Chețan & Ileana Bogdan & Paula Ioana Moraru & Adrian Ioan Pop & Teodor Rusu, 2022. "Use of Vegetable Residues and Cover Crops in the Cultivation of Maize Grown in Different Tillage Systems," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    3. Xinxin Chen & Yongxiu Guo & Jianping Hu & Gaoming Xu & Wei Liu & Guoxin Ma & Qishuo Ding & Ruiyin He, 2024. "Quantitative Evaluation of Post-Tillage Soil Structure Based on Close-Range Photogrammetry," Agriculture, MDPI, vol. 14(12), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    2. Peipei Yang & Wenxu Dong & Marius Heinen & Wei Qin & Oene Oenema, 2022. "Soil Compaction Prevention, Amelioration and Alleviation Measures Are Effective in Mechanized and Smallholder Agriculture: A Meta-Analysis," Land, MDPI, vol. 11(5), pages 1-18, April.
    3. Wondimagegn Tesfaye & Garrick Blalock & Nyasha Tirivayi, 2021. "Climate‐Smart Innovations and Rural Poverty in Ethiopia: Exploring Impacts and Pathways," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 878-899, May.
    4. Lalani, Baqir & Aminpour, Payam & Gray, Steven & Williams, Meredith & Büchi, Lucie & Haggar, Jeremy & Grabowski, Philip & Dambiro, José, 2021. "Mapping farmer perceptions, Conservation Agriculture practices and on-farm measurements: The role of systems thinking in the process of adoption," Agricultural Systems, Elsevier, vol. 191(C).
    5. Kumara, T.M. Kiran & Kandpal, Ankita & Pal, Suresh, 2019. "Determinants and Impacts of Conservation Agriculture in South Asia: A Meta-Analysis of the Evidences," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 74(03), March.
    6. Dardonville, Manon & Legrand, Baptiste & Clivot, Hugues & Bernardin, Claire & Bockstaller, Christian & Therond, Olivier, 2022. "Assessment of ecosystem services and natural capital dynamics in agroecosystems," Ecosystem Services, Elsevier, vol. 54(C).
    7. Adam M. Komarek, 2018. "Conservation agriculture in western China increases productivity and profits without decreasing resilience," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(5), pages 1251-1262, October.
    8. Haowei Ni & Han Hu & Constantin M. Zohner & Weigen Huang & Ji Chen & Yishen Sun & Jixian Ding & Jizhong Zhou & Xiaoyuan Yan & Jiabao Zhang & Yuting Liang & Thomas W. Crowther, 2024. "Effects of winter soil warming on crop biomass carbon loss from organic matter degradation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Somasundaram Jayaraman & Yash P. Dang & Anandkumar Naorem & Kathryn L. Page & Ram C. Dalal, 2021. "Conservation Agriculture as a System to Enhance Ecosystem Services," Agriculture, MDPI, vol. 11(8), pages 1-14, July.
    10. Yang, Xuan & Zheng, Lina & Yang, Qian & Wang, Zikui & Cui, Song & Shen, Yuying, 2018. "Modelling the effects of conservation tillage on crop water productivity, soil water dynamics and evapotranspiration of a maize-winter wheat-soybean rotation system on the Loess Plateau of China using," Agricultural Systems, Elsevier, vol. 166(C), pages 111-123.
    11. Xiaolin Guo & Guanming Shi & Linyi Zheng & Wenrong Qian, 2022. "How Does the Land Rental Market Participation Affect Household Efficiency? Evidence from Rural China," IJERPH, MDPI, vol. 19(23), pages 1-14, December.
    12. Barbieri, Pietro & Starck, Thomas & Voisin, Anne-Sophie & Nesme, Thomas, 2023. "Biological nitrogen fixation of legumes crops under organic farming as driven by cropping management: A review," Agricultural Systems, Elsevier, vol. 205(C).
    13. Yan Zhang & Ji Zhao & Hongyuan Wang & Huancheng Pang, 2023. "Pelletized Straw Incorporation in Sandy Soil Increases Soil Aggregate Stability, Soil Carbon, and Nitrogen Stocks," Sustainability, MDPI, vol. 15(9), pages 1-16, April.
    14. Raymond Mugandani & Liboster Mwadzingeni & Paramu Mafongoya, 2021. "Contribution of Conservation Agriculture to Soil Security," Sustainability, MDPI, vol. 13(17), pages 1-11, September.
    15. Christian Thierfelder & Pauline Chivenge & Walter Mupangwa & Todd S. Rosenstock & Christine Lamanna & Joseph X. Eyre, 2017. "How climate-smart is conservation agriculture (CA)? – its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(3), pages 537-560, June.
    16. Adjognon,Guigonan Serge & Nguyen Huy,Tung & Guthoff,Jonas Christoph & van Soest,Daan, 2022. "Incentivizing Social Learning for the Diffusion of Climate-Smart Agricultural Techniques," Policy Research Working Paper Series 10041, The World Bank.
    17. Ruiz-Espinosa, Laura I. & Verhulst, Nele & van Ogtrop, Floris & Cross, Rebecca & Govaerts, Bram & van Rees, Harm & Trethowan, Richard, 2024. "Quantifying the adoption of conservation agriculture: Development and application of the Conservation Agriculture Appraisal Index," Agricultural Systems, Elsevier, vol. 220(C).
    18. Rachid Aboutayeb & Aziz Baidani & Abdelmonim Zeroual & Nadia Benbrahim & Abdellah El Aissaoui & Hanane Ouhemi & Chafika Houasli & Elisabetta Mazzucotelli & Agata Gadaleta & Omar Idrissi, 2023. "Genetic Variability for Iron, Zinc, and Protein Content in a Mediterranean Lentil Collection Grown under No-Till Conditions: Towards Biofortification under Conservation Agriculture," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
    19. Ward, Patrick S. & Mapemba, Lawrence & Bell, Andrew R., 2021. "Smart subsidies for sustainable soils: Evidence from a randomized controlled trial in southern Malawi," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
    20. Nisar, Shahida & Benbi, Dinesh Kumar & Toor, Amardeep Singh, 2021. "Energy budgeting and carbon footprints of three tillage systems in maize-wheat sequence of north-western Indo-Gangetic Plains," Energy, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:10:p:939-:d:645710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.