IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v10y2020i9p374-d403480.html
   My bibliography  Save this article

Carbon Dioxide Fluxes and Carbon Stocks under Conservation Agricultural Practices in South Africa

Author

Listed:
  • Patrick Nyambo

    (Department of Agronomy, University of Fort Hare, Private Bag X-1314, Alice 5700, South Africa)

  • Chiduza Cornelius

    (Department of Agronomy, University of Fort Hare, Private Bag X-1314, Alice 5700, South Africa)

  • Tesfay Araya

    (Department of Agronomy, University of Fort Hare, Private Bag X-1314, Alice 5700, South Africa)

Abstract

Understanding the impacts of agricultural practices on carbon stocks and CO 2 emission is imperative in order to recommend low emission strategies. The objective of this study was to investigate the effects of tillage, crop rotation, and residue management on soil CO 2 fluxes, carbon stock, soil temperature, and moisture in the semi-arid conditions in the Eastern Cape of South Africa. The field trial was laid out as a split-split-plot design replicated three times. The main plots were tillage viz conventional tillage (CT) and no-till (NT). The sub-plots were allocated to crop rotations viz maize–fallow–maize (MFM), maize–oat–maize (MOM), and maize–vetch–maize (MVM). Crop residue management was in the sub-sub plots, viz retention (R+), removal (R−), and biochar (B). There were no significant interactions ( p > 0.05) with respect to the cumulative CO 2 fluxes, soil moisture, and soil temperature. Crop residue retention significantly increased the soil moisture content relative to residue removal, but was not different to biochar application. Soil tilling increased the CO 2 fluxes by approximately 26.3% relative to the NT. The carbon dioxide fluxes were significantly lower in R− (2.04 µmoL m −2 s −1 ) relative to the R+ (2.32 µmoL m −2 s −1) and B treatments (2.36 µmoL m −2 s −1 ). The carbon dioxide fluxes were higher in the summer (October–February) months compared to the winter period (May–July), irrespective of treatment factors. No tillage had a significantly higher carbon stock at the 0-5 cm depth relative to CT. Amending the soils with biochar resulted in significantly lower total carbon stock relative to both R+ and R−. The results of the study show that NT can potentially reduce CO2 fluxes. In the short term, amending soils with biochar did not reduce the CO 2 fluxes compared to R+, however the soil moisture increases were comparable.

Suggested Citation

  • Patrick Nyambo & Chiduza Cornelius & Tesfay Araya, 2020. "Carbon Dioxide Fluxes and Carbon Stocks under Conservation Agricultural Practices in South Africa," Agriculture, MDPI, vol. 10(9), pages 1-13, August.
  • Handle: RePEc:gam:jagris:v:10:y:2020:i:9:p:374-:d:403480
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/10/9/374/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/10/9/374/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yufang Shen & Lixia Zhu & Hongyan Cheng & Shanchao Yue & Shiqing Li, 2017. "Effects of Biochar Application on CO 2 Emissions from a Cultivated Soil under Semiarid Climate Conditions in Northwest China," Sustainability, MDPI, vol. 9(8), pages 1-13, August.
    2. Turmel, Marie-Soleil & Speratti, Alicia & Baudron, Frédéric & Verhulst, Nele & Govaerts, Bram, 2015. "Crop residue management and soil health: A systems analysis," Agricultural Systems, Elsevier, vol. 134(C), pages 6-16.
    3. Johannes Lehmann & John Gaunt & Marco Rondon, 2006. "Bio-char Sequestration in Terrestrial Ecosystems – A Review," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(2), pages 395-419, March.
    4. Jizhong Zhou & Ye Deng & Lina Shen & Chongqing Wen & Qingyun Yan & Daliang Ning & Yujia Qin & Kai Xue & Liyou Wu & Zhili He & James W. Voordeckers & Joy D. Van Nostrand & Vanessa Buzzard & Sean T. Mic, 2016. "Temperature mediates continental-scale diversity of microbes in forest soils," Nature Communications, Nature, vol. 7(1), pages 1-10, November.
    5. Stacy M. Zuber & Gevan D. Behnke & Emerson D. Nafziger & Maria B. Villamil, 2018. "Carbon and Nitrogen Content of Soil Organic Matter and Microbial Biomass under Long-Term Crop Rotation and Tillage in Illinois, USA," Agriculture, MDPI, vol. 8(3), pages 1-12, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Godwin Iloabuchi Nebo & Alen Manyevere & Tesfay Araya & Johan van Tol, 2020. "Short-Term Impact of Conservation Agriculture on Soil Strength and Saturated Hydraulic Conductivity in the South African Semiarid Areas," Agriculture, MDPI, vol. 10(9), pages 1-12, September.
    2. Yerli, Caner & Sahin, Ustun & Oztas, Taskin, 2022. "CO2 emission from soil in silage maize irrigated with wastewater under deficit irrigation in direct sowing practice," Agricultural Water Management, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehnaz Mosharrof & Md. Kamal Uddin & Shamshuddin Jusop & Muhammad Firdaus Sulaiman & S. M. Shamsuzzaman & Ahmad Numery Ashfaqul Haque, 2021. "Changes in Acidic Soil Chemical Properties and Carbon Dioxide Emission Due to Biochar and Lime Treatments," Agriculture, MDPI, vol. 11(3), pages 1-20, March.
    2. Yaming Zhao & Xiangjun Wang & Guangwei Yao & Zhizhong Lin & Laiyuan Xu & Yunli Jiang & Zewen Jin & Shengdao Shan & Lifeng Ping, 2022. "Advances in the Effects of Biochar on Microbial Ecological Function in Soil and Crop Quality," Sustainability, MDPI, vol. 14(16), pages 1-11, August.
    3. Lizhen Qin & Donghoon Shin, 2023. "Effects of UV Light Treatment on Functional Group and Its Adsorption Capacity of Biochar," Energies, MDPI, vol. 16(14), pages 1-14, July.
    4. Navarro-Miró, D. & Iocola, I. & Persiani, A. & Blanco-Moreno, J.M. & Kristensen, H. Lakkenborg & Hefner, M. & Tamm, K. & Bender, I. & Védie, H. & Willekens, K. & Diacono, M. & Montemurro, F. & Sans, F, 2019. "Energy flows in European organic vegetable systems: Effects of the introduction and management of agroecological service crops," Energy, Elsevier, vol. 188(C).
    5. Lybbert, Travis & Sumner, Daniel, 2010. "Agricultural Technologies for Climate Change Mitigation and Adaptation in Developing Countries: Policy Options for Innovation and Technology Diffusion," Climate Change 320104, International Centre for Trade and Sustainable Development (ICTSD).
    6. Ana Castro & Nilcileny Da Silva Batista & Agnieszka E. Latawiec & Aline Rodrigues & Bernardo Strassburg & Daniel Silva & Ednaldo Araujo & Luiz Fernando D. De Moraes & Jose Guilherme Guerra & Gabriel G, 2018. "The Effects of Gliricidia -Derived Biochar on Sequential Maize and Bean Farming," Sustainability, MDPI, vol. 10(3), pages 1-15, February.
    7. Huang, Yawen & Tao, Bo & Lal, Rattan & Lorenz, Klaus & Jacinthe, Pierre-Andre & Shrestha, Raj K. & Bai, Xiongxiong & Singh, Maninder P. & Lindsey, Laura E. & Ren, Wei, 2023. "A global synthesis of biochar's sustainability in climate-smart agriculture - Evidence from field and laboratory experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    8. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    9. Shekhar, Ankit & Shapiro, Charles A., 2022. "Prospective crop yield and income return based on a retrospective analysis of a long-term rainfed agriculture experiment in Nebraska," Agricultural Systems, Elsevier, vol. 198(C).
    10. Gang Zhang & Dejian Wang & Yuanchun Yu, 2020. "Investigation into the Effects of Straw Retention and Nitrogen Reduction on CH 4 and N 2 O Emissions from Paddy Fields in the Lower Yangtze River Region, China," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    11. Reijnders, L., 2009. "Are forestation, bio-char and landfilled biomass adequate offsets for the climate effects of burning fossil fuels?," Energy Policy, Elsevier, vol. 37(8), pages 2839-2841, August.
    12. Kung, Chih-Chun & McCarl, Bruce A. & Cao, Xiaoyong, 2013. "Economics of pyrolysis-based energy production and biochar utilization: A case study in Taiwan," Energy Policy, Elsevier, vol. 60(C), pages 317-323.
    13. Gulab Singh Yadav & Rahul Datta & Shamina Imran Pathan & Rattan Lal & Ram Swaroop Meena & Subhash Babu & Anup Das & S. N. Bhowmik & Mrinmoy Datta & Poulami Saha & Pawan Kumar Mishra, 2017. "Effects of Conservation Tillage and Nutrient Management Practices on Soil Fertility and Productivity of Rice ( Oryza sativa L.)–Rice System in North Eastern Region of India," Sustainability, MDPI, vol. 9(10), pages 1-17, October.
    14. Adam O’Toole & Christophe Moni & Simon Weldon & Anne Schols & Monique Carnol & Bernard Bosman & Daniel P. Rasse, 2018. "Miscanthus Biochar had Limited Effects on Soil Physical Properties, Microbial Biomass, and Grain Yield in a Four-Year Field Experiment in Norway," Agriculture, MDPI, vol. 8(11), pages 1-19, October.
    15. Jayanta Layek & Rumi Narzari & Samarendra Hazarika & Anup Das & Krishnappa Rangappa & Shidayaichenbi Devi & Arumugam Balusamy & Saurav Saha & Sandip Mandal & Ramkrushna Gandhiji Idapuganti & Subhash B, 2022. "Prospects of Biochar for Sustainable Agriculture and Carbon Sequestration: An Overview for Eastern Himalayas," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    16. Mehnaz Mosharrof & Md. Kamal Uddin & Muhammad Firdaus Sulaiman & Shamim Mia & Shordar M. Shamsuzzaman & Ahmad Numery Ashfaqul Haque, 2021. "Combined Application of Rice Husk Biochar and Lime Increases Phosphorus Availability and Maize Yield in an Acidic Soil," Agriculture, MDPI, vol. 11(8), pages 1-21, August.
    17. Duku, Moses Hensley & Gu, Sai & Hagan, Essel Ben, 2011. "Biochar production potential in Ghana—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3539-3551.
    18. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    19. Subhan Danish & Muhammad Zafar-ul-Hye & Shah Fahad & Shah Saud & Martin Brtnicky & Tereza Hammerschmiedt & Rahul Datta, 2020. "Drought Stress Alleviation by ACC Deaminase Producing Achromobacter xylosoxidans and Enterobacter cloacae , with and without Timber Waste Biochar in Maize," Sustainability, MDPI, vol. 12(15), pages 1-17, August.
    20. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:9:p:374-:d:403480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.