IDEAS home Printed from
   My bibliography  Save this article

What Now? Some Brief Reflections on Model-Free Data Analysis


  • Richard Berk

    (University of Pennsylvania)


David Freedman’s critique of causal modeling in the social and biomedical sciences was fundamental. In his view, the enterprise was misguided, and there was no technical fix. Far too often, there was a disconnect between what the statistical methods required and the substantive information that could be brought to bear. In this paper, I briefly consider some alternatives to causal modeling assuming that David Freedman’s perspective on modeling is correct. In addition to randomized experiments and strong quasi-experiments, I discuss multivariate statistical analysis, exploratory data analysis, dynamic graphics, machine learning and knowledge discovery.

Suggested Citation

  • Richard Berk, 2009. "What Now? Some Brief Reflections on Model-Free Data Analysis," International Econometric Review (IER), Econometric Research Association, vol. 1(1), pages 18-27, April.
  • Handle: RePEc:erh:journl:v:1:y:2009:i:1:p:18-27

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Leeb, Hannes & P tscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(01), pages 21-59, February.
    2. D. A. Freedman & P. B. Stark & K. W. Wachter, 2001. "A probability model for census adjustment," Mathematical Population Studies, Taylor & Francis Journals, vol. 9(2), pages 165-180.
    3. Kenneth W. Wachter & David A. Freedman, 2000. "Measuring Local Heterogeneity with 1990 U.S. Census Data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 3(10), November.
    4. Imbens, Guido W. & Lemieux, Thomas, 2008. "Regression discontinuity designs: A guide to practice," Journal of Econometrics, Elsevier, vol. 142(2), pages 615-635, February.
    5. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    6. Leeb, Hannes & P tscher, Benedikt M., 2008. "Can One Estimate The Unconditional Distribution Of Post-Model-Selection Estimators?," Econometric Theory, Cambridge University Press, vol. 24(02), pages 338-376, April.
    7. Klaus Nordhausen, 2009. "The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition by Trevor Hastie, Robert Tibshirani, Jerome Friedman," International Statistical Review, International Statistical Institute, vol. 77(3), pages 482-482, December.
    8. James J. Heckman, 2000. "Causal Parameters and Policy Analysis in Economics: A Twentieth Century Retrospective," The Quarterly Journal of Economics, Oxford University Press, vol. 115(1), pages 45-97.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Causal Modeling; Regression Analysis; Exploratory Data Analysis; Data Science;

    JEL classification:

    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:erh:journl:v:1:y:2009:i:1:p:18-27. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (M. F. Cosar). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.