Improving the effectiveness of predictors in accounting-based models
Author
Abstract
Suggested Citation
DOI: 10.1108/JAAR-01-2018-0006
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- J. A. John & N. R. Draper, 1980. "An Alternative Family of Transformations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(2), pages 190-197, June.
- Holthausen, Robert W. & Larcker, David F., 1992. "The prediction of stock returns using financial statement information," Journal of Accounting and Economics, Elsevier, vol. 15(2-3), pages 373-411, August.
- R Bird & R Gerlach & AD Hall, 2001.
"The prediction of earnings movements using accounting data: An update and extension of Ou and Penman,"
Journal of Asset Management, Palgrave Macmillan, vol. 2(2), pages 180-195, September.
- Ron Bird & Richard Gerlach & Anthony D Hall, 2001. "The prediction of earnings movements using accounting data: An update and extension of Ou and Penman," Published Paper Series 2001-2, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
- Yu Xie & Charles F. Manski, 1989.
"The Logit Model and Response-Based Samples,"
Sociological Methods & Research, , vol. 17(3), pages 283-302, February.
- Xie, Y. & Manski, C.F., 1988. "The Logit Model And Response-Based Samples," Working papers 8811, Wisconsin Madison - Social Systems.
- Xie, Y. & Manski, C.F., 1989. "The Logic Model And Response-Based Samples," Working papers 372, Wisconsin Madison - Social Systems.
- Clout, Victoria J. & Willett, Roger J., 2016. "Earnings in firm valuation and their value relevance," Journal of Contemporary Accounting and Economics, Elsevier, vol. 12(3), pages 223-240.
- Balcaen, Sofie & Ooghe, Hubert, 2006.
"35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems,"
The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
- S. Balcaen & H. Ooghe, 2004. "35 years of studies on business failure: an overview of the classical statistical methodologiesand their related problems," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/248, Ghent University, Faculty of Economics and Business Administration.
- Edward I. Altman & Gabriele Sabato, 2013.
"MODELING CREDIT RISK FOR SMEs: EVIDENCE FROM THE US MARKET,"
World Scientific Book Chapters, in: Oliviero Roggi & Edward I Altman (ed.), Managing and Measuring Risk Emerging Global Standards and Regulations After the Financial Crisis, chapter 9, pages 251-279,
World Scientific Publishing Co. Pte. Ltd..
- Edward I. Altman & Gabriele Sabato, 2007. "Modelling Credit Risk for SMEs: Evidence from the U.S. Market," Abacus, Accounting Foundation, University of Sydney, vol. 43(3), pages 332-357, September.
- Ou, Ja, 1990. "The Information-Content Of Nonearnings Accounting Numbers As Earnings Predictors," Journal of Accounting Research, Wiley Blackwell, vol. 28(1), pages 144-163.
- Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
- Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
- Fen-May Liou, 2008. "Fraudulent financial reporting detection and business failure prediction models: a comparison," Managerial Auditing Journal, Emerald Group Publishing, vol. 23(7), pages 650-662, July.
- Ou, Jane A. & Penman, Stephen H., 1989. "Financial statement analysis and the prediction of stock returns," Journal of Accounting and Economics, Elsevier, vol. 11(4), pages 295-329, November.
- Stuart McLeay & Duarte Trigueiros, 2002. "Proportionate Growth and the Theoretical Foundations of Financial Ratios," Abacus, Accounting Foundation, University of Sydney, vol. 38(3), pages 297-316, October.
- Patricia M. Dechow & Weili Ge & Chad R. Larson & Richard G. Sloan, 2011. "Predicting Material Accounting Misstatements," Contemporary Accounting Research, John Wiley & Sons, vol. 28(1), pages 17-82, March.
- Amani, Farzaneh A. & Fadlalla, Adam M., 2017. "Data mining applications in accounting: A review of the literature and organizing framework," International Journal of Accounting Information Systems, Elsevier, vol. 24(C), pages 32-58.
- du Jardin, Philippe, 2009. "Bankruptcy prediction models: How to choose the most relevant variables?," MPRA Paper 44380, University Library of Munich, Germany.
- Tian, Shaonan & Yu, Yan & Guo, Hui, 2015. "Variable selection and corporate bankruptcy forecasts," Journal of Banking & Finance, Elsevier, vol. 52(C), pages 89-100.
- Palepu, Krishna G., 1986. "Predicting takeover targets : A methodological and empirical analysis," Journal of Accounting and Economics, Elsevier, vol. 8(1), pages 3-35, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Emilio Abad-Segura & Mariana-Daniela González-Zamar, 2020. "Research Analysis on Emerging Technologies in Corporate Accounting," Mathematics, MDPI, vol. 8(9), pages 1-29, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
- fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
- Ángel Beade & Manuel Rodríguez & José Santos, 2024. "Business failure prediction models with high and stable predictive power over time using genetic programming," Operational Research, Springer, vol. 24(3), pages 1-41, September.
- Alexander Hölzl & Sebastian Lobe, 2016. "Predicting above-median and below-median growth rates," Review of Managerial Science, Springer, vol. 10(1), pages 105-133, January.
- Stina Skogsvik, 2008. "Financial Statement Information, the Prediction of Book Return on Owners' Equity and Market Efficiency: The Swedish Case," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 35(7-8), pages 795-817.
- García-Gallego, Ana & Mures-Quintana, María-Jesús, 2013. "La muestra de empresas en los modelos de predicción del fracaso: influencia en los resultados de clasificación || The Sample of Firms in Business Failure Prediction Models: Influence on Classification," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 15(1), pages 133-150, June.
- John Nkwoma Inekwe, 2016. "Financial Distress, Employees’ Welfare and Entrepreneurship Among SMEs," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 129(3), pages 1135-1153, December.
- Rimona Palas & Amos Baranes, 2017. "The Prediction of Earnings Movement Using Mandated XBRL data ? Industry Analysis," Proceedings of Economics and Finance Conferences 4507381, International Institute of Social and Economic Sciences.
- Rassoul Yazdipour & Richard Constand, 2010. "Predicting Firm Failure: A Behavioral Finance Perspective," Journal of Entrepreneurial Finance, Pepperdine University, Graziadio School of Business and Management, vol. 14(3), pages 90-104, Fall.
- Hyeongjun Kim & Hoon Cho & Doojin Ryu, 2020. "Corporate Default Predictions Using Machine Learning: Literature Review," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
- Xavier Brédart & Eric Séverin & David Veganzones, 2021. "Human resources and corporate failure prediction modeling: Evidence from Belgium," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1325-1341, November.
- Rimona Palas & Amos Baranes, 2019. "Making investment decisions using XBRL filing data," Accounting Research Journal, Emerald Group Publishing Limited, vol. 32(4), pages 587-609, November.
- Muñoz-Izquierdo, Nora & Segovia-Vargas, María Jesús & Camacho-Miñano, María-del-Mar & Pascual-Ezama, David, 2019. "Explaining the causes of business failure using audit report disclosures," Journal of Business Research, Elsevier, vol. 98(C), pages 403-414.
- Simone Poli & Marco Gatti, 2024. "The relevance of cash flow information in predicting corporate bankruptcy in Italian private companies," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2024(1), pages 179-202.
- Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
- Campa, Domenico & Camacho-Miñano, María-del-Mar, 2015. "The impact of SME’s pre-bankruptcy financial distress on earnings management tools," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 222-234.
- Youssef Zizi & Mohamed Oudgou & Abdeslam El Moudden, 2020. "Determinants and Predictors of SMEs’ Financial Failure: A Logistic Regression Approach," Risks, MDPI, vol. 8(4), pages 1-21, October.
- Mousavi, Mohammad M. & Ouenniche, Jamal & Xu, Bing, 2015. "Performance evaluation of bankruptcy prediction models: An orientation-free super-efficiency DEA-based framework," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 64-75.
- Paramonovs Sergejs & Ijevleva Ksenija, 2015. "The Role of Marketing Tools in the Improvement of Consumers Financial Literacy," Acta Universitatis Sapientiae, Economics and Business, Sciendo, vol. 27(1), pages 40-45, December.
- Geertsema, Paul & Lu, Helen, 2020. "The correlation structure of anomaly strategies," Journal of Banking & Finance, Elsevier, vol. 119(C).
More about this item
Keywords
Financial ratios; Accounting-based models; Multivariate models; Predictive models; Value-relevance of accounting information;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:jaarpp:jaar-01-2018-0006. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.