IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v165y2025icp179-193.html
   My bibliography  Save this article

India's growing Ethanol Blending Program and implications of scalable and sustainable Methanol Blending Program for transport sector

Author

Listed:
  • Valera, Hardikk
  • Agarwal, Avinash Kumar

Abstract

The government of India is exploring the possibility of introducing indigenous fuels into the transport sector to reduce petroleum imports. Considering this, an Ethanol Blending Program was launched. The government of India also outlined a vision for a methanol economy, and vehicle trials were performed to understand the challenges of introducing the Methanol Blending Program in India. A review of the Ethanol Blending Program vs. Methanol Blending Program is done in this study by systematically analysing various aspects such as production, the requirement of critical resources such as water, fuel storage issues, and the ‘food vs. fuel’ debate. India's struggle towards providing Indigenous feedstocks for ethanol production can be easily tackled by producing methanol from various abundant feedstocks such as high-ash coal, biomass, and municipal solid waste. However, coal-based methanol (brown methanol) may lead to a larger carbon footprint involving coal extraction and methanol conversion. Green methanol can be a game-changer for India's economy and greenhouse gas emissions. Ethanol has an edge over methanol since methanol has a wider flammability range and higher toxicity. Significant use of food and water stresses for the national ethanol blending program could be the main bottleneck for extending it further for a longer time in India.

Suggested Citation

  • Valera, Hardikk & Agarwal, Avinash Kumar, 2025. "India's growing Ethanol Blending Program and implications of scalable and sustainable Methanol Blending Program for transport sector," Transport Policy, Elsevier, vol. 165(C), pages 179-193.
  • Handle: RePEc:eee:trapol:v:165:y:2025:i:c:p:179-193
    DOI: 10.1016/j.tranpol.2025.01.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X25000071
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2025.01.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manochio, C. & Andrade, B.R. & Rodriguez, R.P. & Moraes, B.S., 2017. "Ethanol from biomass: A comparative overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 743-755.
    2. Silitonga, A.S. & Masjuki, H.H. & Mahlia, T.M.I. & Ong, H.C. & Atabani, A.E. & Chong, W.T., 2013. "A global comparative review of biodiesel production from jatropha curcas using different homogeneous acid and alkaline catalysts: Study of physical and chemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 514-533.
    3. Robert Osei-Kyei & Albert P. C. Chan, 2021. "Reasons for Governments Adoption of Public-Private Partnership," Springer Books, in: International Best Practices of Public-Private Partnership, chapter 0, pages 37-49, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Behera, Biswanath & Sahoo, Malayaranjan & Sethi, Litu & Das, Aurolipsa & Sethi, Narayan & Ahmad, Mahmood, 2025. "Fuelling the low-carbon transportation sector in emerging economies: Role of institutional quality, environmental tax, green technology innovation and biofuel," Transport Policy, Elsevier, vol. 166(C), pages 124-134.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    2. Nariê Rinke Dias de Souza & Bruno Colling Klein & Mateus Ferreira Chagas & Otavio Cavalett & Antonio Bonomi, 2021. "Towards Comparable Carbon Credits: Harmonization of LCA Models of Cellulosic Biofuels," Sustainability, MDPI, vol. 13(18), pages 1-17, September.
    3. Zeng, Hongjun & Abedin, Mohammad Zoynul & Upreti, Vineet, 2024. "Does climate risk as barometers for specific clean energy indices? Insights from quartiles and time-frequency perspective," Energy Economics, Elsevier, vol. 140(C).
    4. Rita H. R. Branco & Mariana S. T. Amândio & Luísa S. Serafim & Ana M. R. B. Xavier, 2020. "Ethanol Production from Hydrolyzed Kraft Pulp by Mono- and Co-Cultures of Yeasts: The Challenge of C6 and C5 Sugars Consumption," Energies, MDPI, vol. 13(3), pages 1-15, February.
    5. Arridina Susan Silitonga & Teuku Meurah Indra Mahlia & Abd Halim Shamsuddin & Hwai Chyuan Ong & Jassinnee Milano & Fitranto Kusumo & Abdi Hanra Sebayang & Surya Dharma & Husin Ibrahim & Hazlina Husin , 2019. "Optimization of Cerbera manghas Biodiesel Production Using Artificial Neural Networks Integrated with Ant Colony Optimization," Energies, MDPI, vol. 12(20), pages 1-21, October.
    6. Terneus Páez, Carlos Francisco & Viteri Salazar, Oswaldo, 2021. "Analysis of biofuel production in Ecuador from the perspective of the water-food-energy nexus," Energy Policy, Elsevier, vol. 157(C).
    7. Jain, Sanyam & Kumar, Shushil, 2024. "A comprehensive review of bioethanol production from diverse feedstocks: Current advancements and economic perspectives," Energy, Elsevier, vol. 296(C).
    8. Inam Ullah Khan & Zhenhua Yan & Jun Chen, 2020. "Production and Characterization of Biodiesel Derived from a Novel Source Koelreuteria paniculata Seed Oil," Energies, MDPI, vol. 13(4), pages 1-15, February.
    9. Tamás Mizik & Lajos Nagy & Zoltán Gabnai & Attila Bai, 2020. "The Major Driving Forces of the EU and US Ethanol Markets with Special Attention Paid to the COVID-19 Pandemic," Energies, MDPI, vol. 13(21), pages 1-22, October.
    10. Moniruzzaman, M. & Yaakob, Zahira & Khatun, Rahima, 2016. "Biotechnology for Jatropha improvement: A worthy exploration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1262-1277.
    11. Bei, Lijing & Ge, Zhiwei & Ren, Changyifan & Su, Di & Ren, Zhenhua & Guo, Liejin, 2022. "Numerical study on supercritical water partial oxidation of ethanol in a continuous reactor," Energy, Elsevier, vol. 249(C).
    12. Xin Zhang & Yun-Ze Li & Ao-Bing Wang & Li-Jun Gao & Hui-Juan Xu & Xian-Wen Ning, 2020. "The Development Strategies and Technology Roadmap of Bioenergy for a Typical Region: A Case Study in the Beijing-Tianjin-Hebei Region in China," Energies, MDPI, vol. 13(4), pages 1-25, February.
    13. Richard Ahorsu & Francesc Medina & Magda Constantí, 2018. "Significance and Challenges of Biomass as a Suitable Feedstock for Bioenergy and Biochemical Production: A Review," Energies, MDPI, vol. 11(12), pages 1-19, December.
    14. Milão, Raquel de Freitas Dias & Carminati, Hudson B. & Araújo, Ofélia de Queiroz F. & de Medeiros, José Luiz, 2019. "Thermodynamic, financial and resource assessments of a large-scale sugarcane-biorefinery: Prelude of full bioenergy carbon capture and storage scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    15. Silitonga, A.S. & Shamsuddin, A.H. & Mahlia, T.M.I. & Milano, Jassinne & Kusumo, F. & Siswantoro, Joko & Dharma, S. & Sebayang, A.H. & Masjuki, H.H. & Ong, Hwai Chyuan, 2020. "Biodiesel synthesis from Ceiba pentandra oil by microwave irradiation-assisted transesterification: ELM modeling and optimization," Renewable Energy, Elsevier, vol. 146(C), pages 1278-1291.
    16. Baral, Nawa Raj & Neupane, Pratikshya & Ale, Bhakta Bahadur & Quiroz-Arita, Carlos & Manandhar, Shishir & Bradley, Thomas H., 2020. "Stochastic economic and environmental footprints of biodiesel production from Jatropha curcas Linnaeus in the different federal states of Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    17. Jurandir Zullo & Vânia Rosa Pereira & Andrea Koga-Vicente, 2018. "Sugar-energy sector vulnerability under CMIP5 projections in the Brazilian central-southern macro-region," Climatic Change, Springer, vol. 149(3), pages 489-502, August.
    18. Umanath Malaiarasan & R. Paramasivam & K. Thomas Felix & S. J. Balaji, 2020. "Simultaneous equation model for Indian sugar sector," Journal of Social and Economic Development, Springer;Institute for Social and Economic Change, vol. 22(1), pages 113-141, June.
    19. Wu, Horng-Wen & Lin, Ke-Wei, 2019. "Hydrogen-rich syngas production by reforming of ethanol blended with aqueous urea using a thermodynamic analysis," Energy, Elsevier, vol. 166(C), pages 541-551.
    20. Paola Sakai & Stavros Afionis & Nicola Favretto & Lindsay C. Stringer & Caroline Ward & Marco Sakai & Pedro Henrique Weirich Neto & Carlos Hugo Rocha & Jaime Alberti Gomes & Nátali Maidl de Souza & No, 2020. "Understanding the Implications of Alternative Bioenergy Crops to Support Smallholder Farmers in Brazil," Sustainability, MDPI, vol. 12(5), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:165:y:2025:i:c:p:179-193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.