IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v141y2023icp152-166.html
   My bibliography  Save this article

Investigating occasional travel patterns based on smartcard transactions

Author

Listed:
  • Fulman, Nir
  • Marinov, Maria
  • Benenson, Itzhak

Abstract

Public transportation (PT) studies often neglect non-routine trips focusing predominantly on commuting. However, recent research revealed that occasional trips make up a substantial portion of public transport journeys, and traveler preferences for non-routine trips diverge from their preferences for regular commuting. We study non-routine trips based on a database of 63 million smartcard (SC) records of PT boardings made in Israel during June 2019. The characteristics of these trips are revealed by clustering PT users’ boarding records based on the location of the boarding stops and time of day, applying an extended DBSCAN algorithm. Our major findings are that (1) conventional home-work-home commuters are a minority in Israel and constitute less than 15% of the riders; (2) at least 30% of the PT trips do not belong to any cluster and can be classified as occasional; (3) The vast majority of users make both recurrent and occasional trips. A linear regression model provides a good estimate (R2 = 0.85) of the number of occasional boardings at a stop as a function of the total number of boardings, time of day, and land use composition around the location of trip origin. We discuss the potential applications of our approach in the landscape of diverse flexible PT.

Suggested Citation

  • Fulman, Nir & Marinov, Maria & Benenson, Itzhak, 2023. "Investigating occasional travel patterns based on smartcard transactions," Transport Policy, Elsevier, vol. 141(C), pages 152-166.
  • Handle: RePEc:eee:trapol:v:141:y:2023:i:c:p:152-166
    DOI: 10.1016/j.tranpol.2023.07.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X23001919
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2023.07.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Schaller, Bruce, 2021. "Can sharing a ride make for less traffic? Evidence from Uber and Lyft and implications for cities," Transport Policy, Elsevier, vol. 102(C), pages 1-10.
    2. Bar-Yosef, Asaf & Martens, Karel & Benenson, Itzhak, 2013. "A model of the vicious cycle of a bus line," Transportation Research Part B: Methodological, Elsevier, vol. 54(C), pages 37-50.
    3. de Souza Silva, Laize Andréa & de Andrade, Maurício Oliveira & Alves Maia, Maria Leonor, 2018. "How does the ride-hailing systems demand affect individual transport regulation?," Research in Transportation Economics, Elsevier, vol. 69(C), pages 600-606.
    4. Morency, Catherine & Trépanier, Martin & Agard, Bruno, 2007. "Measuring transit use variability with smart-card data," Transport Policy, Elsevier, vol. 14(3), pages 193-203, May.
    5. repec:cdl:itsdav:qt82w2z91j is not listed on IDEAS
    6. Tirachini, Alejandro & del Río, Mariana, 2019. "Ride-hailing in Santiago de Chile: Users’ characterisation and effects on travel behaviour," Transport Policy, Elsevier, vol. 82(C), pages 46-57.
    7. repec:cdl:itsrrp:qt60v8r346 is not listed on IDEAS
    8. Lavieri, Patrícia S. & Bhat, Chandra R., 2019. "Modeling individuals’ willingness to share trips with strangers in an autonomous vehicle future," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 242-261.
    9. Erhardt, Gregory D. & Hoque, Jawad Mahmud & Goyal, Vedant & Berrebi, Simon & Brakewood, Candace & Watkins, Kari E., 2022. "Why has public transit ridership declined in the United States?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 161(C), pages 68-87.
    10. Ed Manley & Chen Zhong & Michael Batty, 2018. "Spatiotemporal variation in travel regularity through transit user profiling," Transportation, Springer, vol. 45(3), pages 703-732, May.
    11. Ma, Xiaolei & Liu, Congcong & Wen, Huimin & Wang, Yunpeng & Wu, Yao-Jan, 2017. "Understanding commuting patterns using transit smart card data," Journal of Transport Geography, Elsevier, vol. 58(C), pages 135-145.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Xinwei & Tian, Xiaolin & Jin, Zejin & Cui, Hongjun & Ji, Yanjie & Cheng, Long, 2024. "Evaluation and determinants of metro users' regularity: Insights from transit one-card data," Journal of Transport Geography, Elsevier, vol. 118(C).
    2. Hainan Huang & Yi Lin & Jiancheng Weng & Jian Rong & Xiaoming Liu, 2018. "Identification of Inelastic Subway Trips Based on Weekly Station Sequence Data: An Example from the Beijing Subway," Sustainability, MDPI, vol. 10(12), pages 1-15, December.
    3. Jie Huang & David Levinson & Jiaoe Wang & Haitao Jin, 2019. "Job-worker spatial dynamics in Beijing: Insights from Smart Card Data," Working Papers 2019-01, University of Minnesota: Nexus Research Group.
    4. Yang, Hongtai & Luo, Peng & Li, Chaojing & Zhai, Guocong & Yeh, Anthony G.O., 2023. "Nonlinear effects of fare discounts and built environment on ridesplitting adoption rates," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    5. Ong, Felita & Loa, Patrick & Nurul Habib, Khandker, 2024. "Is it the trip or the trip-maker? Modelling factors influencing the demand induced by the availability of ride-sourcing services in Metro Vancouver," Transport Policy, Elsevier, vol. 151(C), pages 110-119.
    6. Amaya, Margarita & Cruzat, Ramón & Munizaga, Marcela A., 2018. "Estimating the residence zone of frequent public transport users to make travel pattern and time use analysis," Journal of Transport Geography, Elsevier, vol. 66(C), pages 330-339.
    7. Jiao, Hongzan & Huang, Shibiao & Zhou, Yu, 2023. "Understanding the land use function of station areas based on spatiotemporal similarity in rail transit ridership: A case study in Shanghai, China," Journal of Transport Geography, Elsevier, vol. 109(C).
    8. Ghazaleh Azimi & Alireza Rahimi & Xia Jin, 2022. "Exploring the attitudes of Millennials and Generation Xers toward ridesourcing services," Transportation, Springer, vol. 49(6), pages 1765-1799, December.
    9. Zhang, Kenan & Nie, Yu (Marco), 2022. "Mitigating traffic congestion induced by transportation network companies: A policy analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 96-118.
    10. Zhao, Xingrong & Shao, Shuai & Ma, Ye & Ma, Tieju, 2023. "Who Embraces shared mobility and why? A survey in Beijing and Shanghai, China," Energy, Elsevier, vol. 283(C).
    11. Cong Liao & Teqi Dai, 2022. "Is “Attending Nearby School” Near? An Analysis of Travel-to-School Distances of Primary Students in Beijing Using Smart Card Data," Sustainability, MDPI, vol. 14(7), pages 1-12, April.
    12. Soria, Jason & Stathopoulos, Amanda, 2021. "Investigating socio-spatial differences between solo ridehailing and pooled rides in diverse communities," Journal of Transport Geography, Elsevier, vol. 95(C).
    13. Pieroni, Caio & Giannotti, Mariana & Alves, Bianca B. & Arbex, Renato, 2021. "Big data for big issues: Revealing travel patterns of low-income population based on smart card data mining in a global south unequal city," Journal of Transport Geography, Elsevier, vol. 96(C).
    14. Wang, Yihong & Correia, Gonçalo Homem de Almeida & de Romph, Erik & Timmermans, H.J.P., 2017. "Using metro smart card data to model location choice of after-work activities: An application to Shanghai," Journal of Transport Geography, Elsevier, vol. 63(C), pages 40-47.
    15. Rezwana Rafiq & Michael G. McNally, 2023. "An exploratory analysis of alternative travel behaviors of ride-hailing users," Transportation, Springer, vol. 50(2), pages 571-605, April.
    16. Benito Zaragozí & Sergio Trilles & Aaron Gutiérrez & Daniel Miravet, 2021. "Development of a Common Framework for Analysing Public Transport Smart Card Data," Energies, MDPI, vol. 14(19), pages 1-22, September.
    17. Gödde, Jan & Ruhrort, Lisa & Allert, Viktoria & Scheiner, Joachim, 2023. "User characteristics and spatial correlates of ride-pooling demand – Evidence from Berlin and Munich," Journal of Transport Geography, Elsevier, vol. 109(C).
    18. Zhanhong Cheng & Martin Trépanier & Lijun Sun, 2021. "Probabilistic model for destination inference and travel pattern mining from smart card data," Transportation, Springer, vol. 48(4), pages 2035-2053, August.
    19. Tao, Sui & Rowe, Francisco & Shan, Hongyu, 2025. "Nonlinearities and threshold points in the effect of contextual features on the spatial and temporal variability of bus use in Beijing using explainable machine learning: Predictable or uncertain trip," Journal of Transport Geography, Elsevier, vol. 123(C).
    20. Wang, Hai & Yang, Hai, 2019. "Ridesourcing systems: A framework and review," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 122-155.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:141:y:2023:i:c:p:152-166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.