IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v141y2023icp152-166.html
   My bibliography  Save this article

Investigating occasional travel patterns based on smartcard transactions

Author

Listed:
  • Fulman, Nir
  • Marinov, Maria
  • Benenson, Itzhak

Abstract

Public transportation (PT) studies often neglect non-routine trips focusing predominantly on commuting. However, recent research revealed that occasional trips make up a substantial portion of public transport journeys, and traveler preferences for non-routine trips diverge from their preferences for regular commuting. We study non-routine trips based on a database of 63 million smartcard (SC) records of PT boardings made in Israel during June 2019. The characteristics of these trips are revealed by clustering PT users’ boarding records based on the location of the boarding stops and time of day, applying an extended DBSCAN algorithm. Our major findings are that (1) conventional home-work-home commuters are a minority in Israel and constitute less than 15% of the riders; (2) at least 30% of the PT trips do not belong to any cluster and can be classified as occasional; (3) The vast majority of users make both recurrent and occasional trips. A linear regression model provides a good estimate (R2 = 0.85) of the number of occasional boardings at a stop as a function of the total number of boardings, time of day, and land use composition around the location of trip origin. We discuss the potential applications of our approach in the landscape of diverse flexible PT.

Suggested Citation

  • Fulman, Nir & Marinov, Maria & Benenson, Itzhak, 2023. "Investigating occasional travel patterns based on smartcard transactions," Transport Policy, Elsevier, vol. 141(C), pages 152-166.
  • Handle: RePEc:eee:trapol:v:141:y:2023:i:c:p:152-166
    DOI: 10.1016/j.tranpol.2023.07.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X23001919
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2023.07.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Souza Silva, Laize Andréa & de Andrade, Maurício Oliveira & Alves Maia, Maria Leonor, 2018. "How does the ride-hailing systems demand affect individual transport regulation?," Research in Transportation Economics, Elsevier, vol. 69(C), pages 600-606.
    2. Morency, Catherine & Trépanier, Martin & Agard, Bruno, 2007. "Measuring transit use variability with smart-card data," Transport Policy, Elsevier, vol. 14(3), pages 193-203, May.
    3. Clewlow, Regina R. & Mishra, Gouri S., 2017. "Disruptive Transportation: The Adoption, Utilization, and Impacts of Ride-Hailing in the United States," Institute of Transportation Studies, Working Paper Series qt82w2z91j, Institute of Transportation Studies, UC Davis.
    4. Rayle, Lisa & Dai, Danielle & Chan, Nelson & Cervero, Robert & Shaheen, Susan PhD, 2016. "Just A Better Taxi? A Survey-Based Comparison of Taxis, Transit, and Ridesourcing Services in San Francisco," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt60v8r346, Institute of Transportation Studies, UC Berkeley.
    5. Erhardt, Gregory D. & Hoque, Jawad Mahmud & Goyal, Vedant & Berrebi, Simon & Brakewood, Candace & Watkins, Kari E., 2022. "Why has public transit ridership declined in the United States?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 161(C), pages 68-87.
    6. Ma, Xiaolei & Liu, Congcong & Wen, Huimin & Wang, Yunpeng & Wu, Yao-Jan, 2017. "Understanding commuting patterns using transit smart card data," Journal of Transport Geography, Elsevier, vol. 58(C), pages 135-145.
    7. Schaller, Bruce, 2021. "Can sharing a ride make for less traffic? Evidence from Uber and Lyft and implications for cities," Transport Policy, Elsevier, vol. 102(C), pages 1-10.
    8. Bar-Yosef, Asaf & Martens, Karel & Benenson, Itzhak, 2013. "A model of the vicious cycle of a bus line," Transportation Research Part B: Methodological, Elsevier, vol. 54(C), pages 37-50.
    9. Tirachini, Alejandro & del Río, Mariana, 2019. "Ride-hailing in Santiago de Chile: Users’ characterisation and effects on travel behaviour," Transport Policy, Elsevier, vol. 82(C), pages 46-57.
    10. Lavieri, Patrícia S. & Bhat, Chandra R., 2019. "Modeling individuals’ willingness to share trips with strangers in an autonomous vehicle future," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 242-261.
    11. Ed Manley & Chen Zhong & Michael Batty, 2018. "Spatiotemporal variation in travel regularity through transit user profiling," Transportation, Springer, vol. 45(3), pages 703-732, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Kenan & Nie, Yu (Marco), 2022. "Mitigating traffic congestion induced by transportation network companies: A policy analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 96-118.
    2. Soria, Jason & Stathopoulos, Amanda, 2021. "Investigating socio-spatial differences between solo ridehailing and pooled rides in diverse communities," Journal of Transport Geography, Elsevier, vol. 95(C).
    3. Wang, Hai & Yang, Hai, 2019. "Ridesourcing systems: A framework and review," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 122-155.
    4. Liu, Hao & Devunuri, Saipraneeth & Lehe, Lewis & Gayah, Vikash V., 2023. "Scale effects in ridesplitting: A case study of the City of Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    5. Yang, Hongtai & Luo, Peng & Li, Chaojing & Zhai, Guocong & Yeh, Anthony G.O., 2023. "Nonlinear effects of fare discounts and built environment on ridesplitting adoption rates," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    6. Dean, Matthew D. & Kockelman, Kara M., 2021. "Spatial variation in shared ride-hail trip demand and factors contributing to sharing: Lessons from Chicago," Journal of Transport Geography, Elsevier, vol. 91(C).
    7. Young, Mischa & Allen, Jeff & Farber, Steven, 2020. "Measuring when Uber behaves as a substitute or supplement to transit: An examination of travel-time differences in Toronto," Journal of Transport Geography, Elsevier, vol. 82(C).
    8. Ghazaleh Azimi & Alireza Rahimi & Xia Jin, 2022. "Exploring the attitudes of Millennials and Generation Xers toward ridesourcing services," Transportation, Springer, vol. 49(6), pages 1765-1799, December.
    9. Schaller, Bruce, 2021. "Can sharing a ride make for less traffic? Evidence from Uber and Lyft and implications for cities," Transport Policy, Elsevier, vol. 102(C), pages 1-10.
    10. Xu, Yiming & Yan, Xiang & Liu, Xinyu & Zhao, Xilei, 2021. "Identifying key factors associated with ridesplitting adoption rate and modeling their nonlinear relationships," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 170-188.
    11. Rezwana Rafiq & Michael G. McNally, 2023. "An exploratory analysis of alternative travel behaviors of ride-hailing users," Transportation, Springer, vol. 50(2), pages 571-605, April.
    12. Tirachini, Alejandro & del Río, Mariana, 2019. "Ride-hailing in Santiago de Chile: Users’ characterisation and effects on travel behaviour," Transport Policy, Elsevier, vol. 82(C), pages 46-57.
    13. Loa, Patrick & Hossain, Sanjana & Liu, Yicong & Nurul Habib, Khandker, 2022. "How has the COVID-19 pandemic affected the use of ride-sourcing services? An empirical evidence-based investigation for the Greater Toronto Area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 46-62.
    14. Sörensen, Leif & Bossert, Andreas & Jokinen, Jani-Pekka & Schlüter, Jan, 2021. "How much flexibility does rural public transport need? – Implications from a fully flexible DRT system," Transport Policy, Elsevier, vol. 100(C), pages 5-20.
    15. Jason Soria & Shelly Etzioni & Yoram Shiftan & Amanda Stathopoulos & Eran Ben-Elia, 2022. "Microtransit adoption in the wake of the COVID-19 pandemic: evidence from a choice experiment with transit and car commuters," Papers 2204.01974, arXiv.org.
    16. Vignon, Daniel & Yin, Yafeng & Ke, Jintao, 2023. "Regulating the ride-hailing market in the age of uberization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    17. Yu, Haitao & Peng, Zhong-Ren, 2019. "Exploring the spatial variation of ridesourcing demand and its relationship to built environment and socioeconomic factors with the geographically weighted Poisson regression," Journal of Transport Geography, Elsevier, vol. 75(C), pages 147-163.
    18. Xiaoxia Dong & Erick Guerra & Ricardo A. Daziano, 2022. "Impact of TNC on travel behavior and mode choice: a comparative analysis of Boston and Philadelphia," Transportation, Springer, vol. 49(6), pages 1577-1597, December.
    19. Hainan Huang & Yi Lin & Jiancheng Weng & Jian Rong & Xiaoming Liu, 2018. "Identification of Inelastic Subway Trips Based on Weekly Station Sequence Data: An Example from the Beijing Subway," Sustainability, MDPI, vol. 10(12), pages 1-15, December.
    20. Vanderschuren, Marianne & Baufeldt, Jennifer, 2018. "Ride-sharing: A potential means to increase the quality and availability of motorised trips while discouraging private motor ownership in developing cities?," Research in Transportation Economics, Elsevier, vol. 69(C), pages 607-614.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:141:y:2023:i:c:p:152-166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.