Author
Listed:
- Li, Yan
- Hu, Lu
- Li, Haobin
- Chew, Ek Peng
- Li, Hao
- Zhu, Juanxiu
Abstract
Hybrid electric vehicles (HEVs) are perceived as transitional products bridging the gap between fueled vehicles and electric vehicles (EVs) because people intuitively believe that EVs are more environmentally friendly than HEVs. But is this perception true in the context of carsharing services (CSSs)? This paper pioneers a general large-scale multi-objective simulation–optimization (MOSO) method to explore the values of deploying HEVs in CSSs. We firstly develop a physically logical simulation model, emulating operations of CSSs and capturing mesoscopic dynamics of shared vehicles in a link-based traffic network. This model adopts an event-driven discrete-event mechanism, enhancing efficiency while maintaining high fidelity. Subsequently, we design a simulation–optimization framework aimed at achieving Pareto optimality by jointly optimizing station capacity, fleet size, and trip pricing. The goal is twofold: to maximize operational profits and to minimize carbon emissions, thereby quantitatively analyzing the potential of shared HEVs (SHEVs). To tackle the high-dimensional MOSO problem, we introduce the multi-objective optimization into stochastic approximation field by proposing a general algorithm that incorporates the multiple gradient descent algorithm with the simultaneous perturbation stochastic approximation algorithm. Furthermore, we derive its analytical expression for bi-objective optimization problems. We theoretically prove and practically demonstrate its strong global convergence. The efficiency of this method was validated through large-scale computational experiments conducted in Chengdu, Sichuan Province, involving 66,710 decision variables. These experiments showcased the method’s superiority over existing MOSO algorithms. Several groups of sensitivity experiments focusing on vehicle types and traffic scenarios reveal some interesting findings. (1) Regardless of the increase in travel distances, SHEVs, which can be viewed as shared EVs (SEVs) without range anxiety (RA), continue to primarily rely on electricity rather than fuel for their operational mileages. This high utilization of electricity results in lower carbon emissions compared to SEVs. (2) Under any traffic condition, the dual-engine feature of SHEVs significantly reduces the number of failed pickups. (3) As travel demand increases, the state of charge for SEVs may rapidly fall below the threshold that triggers RA, whereas SHEVs maintain a more reliable power supply.
Suggested Citation
Li, Yan & Hu, Lu & Li, Haobin & Chew, Ek Peng & Li, Hao & Zhu, Juanxiu, 2025.
"Are electric vehicles greener than hybrid electric vehicles in carsharing? Insights from large-scale multi-objective simulation-optimization,"
Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 198(C).
Handle:
RePEc:eee:transe:v:198:y:2025:i:c:s1366554525001395
DOI: 10.1016/j.tre.2025.104098
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:198:y:2025:i:c:s1366554525001395. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.