IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v189y2008i2p476-491.html
   My bibliography  Save this article

Multi-objective simulation-based evolutionary algorithm for an aircraft spare parts allocation problem

Author

Listed:
  • Lee, Loo Hay
  • Chew, Ek Peng
  • Teng, Suyan
  • Chen, Yankai

Abstract

Simulation optimization has received considerable attention from both simulation researchers and practitioners. In this study, we develop a solution framework which integrates multi-objective evolutionary algorithm (MOEA) with multi-objective computing budget allocation (MOCBA) method for the multi-objective simulation optimization problem. We apply it on a multi-objective aircraft spare parts allocation problem to find a set of non-dominated solutions. The problem has three features: huge search space, multi-objective, and high variability. To address these difficulties, the solution framework employs simulation to estimate the performance, MOEA to search for the more promising designs, and MOCBA algorithm to identify the non-dominated designs and efficiently allocate the simulation budget. Some computational experiments are carried out to test the effectiveness and performance of the proposed solution framework.

Suggested Citation

  • Lee, Loo Hay & Chew, Ek Peng & Teng, Suyan & Chen, Yankai, 2008. "Multi-objective simulation-based evolutionary algorithm for an aircraft spare parts allocation problem," European Journal of Operational Research, Elsevier, vol. 189(2), pages 476-491, September.
  • Handle: RePEc:eee:ejores:v:189:y:2008:i:2:p:476-491
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00513-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Teleb, Radi & Azadivar, Farhad, 1994. "A methodology for solvng multi-objective simulation-optimization problems," European Journal of Operational Research, Elsevier, vol. 72(1), pages 135-145, January.
    2. Hanne, Thomas & Nickel, Stefan, 2005. "A multiobjective evolutionary algorithm for scheduling and inspection planning in software development projects," European Journal of Operational Research, Elsevier, vol. 167(3), pages 663-678, December.
    3. John Butler & Douglas J. Morrice & Peter W. Mullarkey, 2001. "A Multiple Attribute Utility Theory Approach to Ranking and Selection," Management Science, INFORMS, vol. 47(6), pages 800-816, June.
    4. Diaz, Angel & Fu, Michael C., 1997. "Models for multi-echelon repairable item inventory systems with limited repair capacity," European Journal of Operational Research, Elsevier, vol. 97(3), pages 480-492, March.
    5. Stephen E. Chick & Koichiro Inoue, 2001. "New Two-Stage and Sequential Procedures for Selecting the Best Simulated System," Operations Research, INFORMS, vol. 49(5), pages 732-743, October.
    6. Barry L. Nelson & Julie Swann & David Goldsman & Wheyming Song, 2001. "Simple Procedures for Selecting the Best Simulated System When the Number of Alternatives is Large," Operations Research, INFORMS, vol. 49(6), pages 950-963, December.
    7. Alrefaei, Mahmoud H. & Alawneh, Ameen J., 2004. "Selecting the best stochastic system for large scale problems in DEDS," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(2), pages 237-245.
    8. Kennedy, W. J. & Wayne Patterson, J. & Fredendall, Lawrence D., 2002. "An overview of recent literature on spare parts inventories," International Journal of Production Economics, Elsevier, vol. 76(2), pages 201-215, March.
    9. Papadopoulos, H. T., 1996. "A field service support system using a queueing network model and the priority MVA algorithm," Omega, Elsevier, vol. 24(2), pages 195-203, April.
    10. Alkhamis, Talal M. & Ahmed, Mohamed A. & Tuan, Vu Kim, 1999. "Simulated annealing for discrete optimization with estimation," European Journal of Operational Research, Elsevier, vol. 116(3), pages 530-544, August.
    11. Stephen E. Chick & Koichiro Inoue, 2001. "New Procedures to Select the Best Simulated System Using Common Random Numbers," Management Science, INFORMS, vol. 47(8), pages 1133-1149, August.
    12. Lee, Loo Hay & Lee, Chul Ung & Tan, Yen Ping, 2007. "A multi-objective genetic algorithm for robust flight scheduling using simulation," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1948-1968, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Qiwei & Boylan, John E. & Chen, Huijing & Labib, Ashraf, 2018. "OR in spare parts management: A review," European Journal of Operational Research, Elsevier, vol. 266(2), pages 395-414.
    2. Tsai, Shing Chih & Fu, Sheng Yang, 2014. "Genetic-algorithm-based simulation optimization considering a single stochastic constraint," European Journal of Operational Research, Elsevier, vol. 236(1), pages 113-125.
    3. Sleptchenko, Andrei & Turan, Hasan Hüseyin & Pokharel, Shaligram & ElMekkawy, Tarek Y., 2019. "Cross-training policies for repair shops with spare part inventories," International Journal of Production Economics, Elsevier, vol. 209(C), pages 334-345.
    4. Ito, Kodo & Mizutani, Satoshi & Nakagawa, Toshio, 2020. "Optimal inspection models with minimal repair," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    5. Goh, C.K. & Tan, K.C. & Liu, D.S. & Chiam, S.C., 2010. "A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design," European Journal of Operational Research, Elsevier, vol. 202(1), pages 42-54, April.
    6. Feng, Bo & Jiang, Zhong-Zhong & Fan, Zhi-Ping & Fu, Na, 2010. "A method for member selection of cross-functional teams using the individual and collaborative performances," European Journal of Operational Research, Elsevier, vol. 203(3), pages 652-661, June.
    7. Wang, Yujia & Yang, Yupu, 2010. "Particle swarm with equilibrium strategy of selection for multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 200(1), pages 187-197, January.
    8. Kyle Cooper & Susan R. Hunter, 2020. "PyMOSO: Software for Multiobjective Simulation Optimization with R-PERLE and R-MinRLE," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 1101-1108, October.
    9. Miranda, Rafael de Carvalho & Montevechi, José Arnaldo Barra & da Silva, Aneirson Francisco & Marins, Fernando Augusto Silva, 2017. "Increasing the efficiency in integer simulation optimization: Reducing the search space through data envelopment analysis and orthogonal arrays," European Journal of Operational Research, Elsevier, vol. 262(2), pages 673-681.
    10. Lin, Rung-Chuan & Sir, Mustafa Y. & Pasupathy, Kalyan S., 2013. "Multi-objective simulation optimization using data envelopment analysis and genetic algorithm: Specific application to determining optimal resource levels in surgical services," Omega, Elsevier, vol. 41(5), pages 881-892.
    11. Regattieri, A. & Giazzi, A. & Gamberi, M. & Gamberini, R., 2015. "An innovative method to optimize the maintenance policies in an aircraft: General framework and case study," Journal of Air Transport Management, Elsevier, vol. 44, pages 8-20.
    12. Joshua Q. Hale & Helin Zhu & Enlu Zhou, 2020. "Domination Measure: A New Metric for Solving Multiobjective Optimization," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 565-581, July.
    13. Syberfeldt, Anna & Ng, Amos & John, Robert I. & Moore, Philip, 2010. "Evolutionary optimisation of noisy multi-objective problems using confidence-based dynamic resampling," European Journal of Operational Research, Elsevier, vol. 204(3), pages 533-544, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alrefaei, Mahmoud H. & Alawneh, Ameen J., 2005. "Solution quality of random search methods for discrete stochastic optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 68(2), pages 115-125.
    2. R. Sundarraj, 2006. "A model for standardizing human decisions concerning service-contracts management," Annals of Operations Research, Springer, vol. 143(1), pages 171-189, March.
    3. Teng, Suyan & Lee, Loo Hay & Chew, Ek Peng, 2010. "Integration of indifference-zone with multi-objective computing budget allocation," European Journal of Operational Research, Elsevier, vol. 203(2), pages 419-429, June.
    4. Rosen, Scott L. & Harmonosky, Catherine M. & Traband, Mark T., 2007. "A simulation optimization method that considers uncertainty and multiple performance measures," European Journal of Operational Research, Elsevier, vol. 181(1), pages 315-330, August.
    5. Lee, Loo Hay & Chew, Ek Peng & Manikam, Puvaneswari, 2006. "A general framework on the simulation-based optimization under fixed computing budget," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1828-1841, November.
    6. Rahimi-Ghahroodi, S. & Al Hanbali, A. & Vliegen, I.M.H. & Cohen, M.A., 2019. "Joint optimization of spare parts inventory and service engineers staffing with full backlogging," International Journal of Production Economics, Elsevier, vol. 212(C), pages 39-50.
    7. Minjae Park & Ki Mun Jung & Dong Ho Park, 2016. "Optimal warranty policies considering repair service and replacement service under the manufacturer’s perspective," Annals of Operations Research, Springer, vol. 244(1), pages 117-132, September.
    8. Kennedy, W. J. & Wayne Patterson, J. & Fredendall, Lawrence D., 2002. "An overview of recent literature on spare parts inventories," International Journal of Production Economics, Elsevier, vol. 76(2), pages 201-215, March.
    9. Fritzsche, R., 2012. "Cost adjustment for single item pooling models using a dynamic failure rate: A calculation for the aircraft industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(6), pages 1065-1079.
    10. Jie Xu & Barry L. Nelson & L. Jeff Hong, 2013. "An Adaptive Hyperbox Algorithm for High-Dimensional Discrete Optimization via Simulation Problems," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 133-146, February.
    11. Ernesto Armando Pacheco-Velázquez & Manuel Robles-Cárdenas & Saúl Juárez Ordóñez & Abelardo Ernesto Damy Solís & Leopoldo Eduardo Cárdenas-Barrón, 2023. "A Heuristic Model for Spare Parts Stocking Based on Markov Chains," Mathematics, MDPI, vol. 11(16), pages 1-21, August.
    12. Jin, Tongdan & Tian, Yu, 2012. "Optimizing reliability and service parts logistics for a time-varying installed base," European Journal of Operational Research, Elsevier, vol. 218(1), pages 152-162.
    13. D Louit & R Pascual & D Banjevic & A K S Jardine, 2011. "Optimization models for critical spare parts inventories—a reliability approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(6), pages 992-1004, June.
    14. Zhongshun Shi & Siyang Gao & Hui Xiao & Weiwei Chen, 2019. "A worst‐case formulation for constrained ranking and selection with input uncertainty," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(8), pages 648-662, December.
    15. Demet Batur & Lina Wang & F. Fred Choobineh, 2018. "Methods for System Selection Based on Sequential Mean–Variance Analysis," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 724-738, November.
    16. Godoy, David R. & Pascual, Rodrigo & Knights, Peter, 2013. "Critical spare parts ordering decisions using conditional reliability and stochastic lead time," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 199-206.
    17. Sleptchenko, A. & van der Heijden, M. C. & van Harten, A., 2005. "Using repair priorities to reduce stock investment in spare part networks," European Journal of Operational Research, Elsevier, vol. 163(3), pages 733-750, June.
    18. Hu, Qiwei & Boylan, John E. & Chen, Huijing & Labib, Ashraf, 2018. "OR in spare parts management: A review," European Journal of Operational Research, Elsevier, vol. 266(2), pages 395-414.
    19. Colen, P.J. & Lambrecht, M.R., 2012. "Cross-training policies in field services," International Journal of Production Economics, Elsevier, vol. 138(1), pages 76-88.
    20. Cheng, Zhenxia & Luo, Jun & Wu, Ruijing, 2023. "On the finite-sample statistical validity of adaptive fully sequential procedures," European Journal of Operational Research, Elsevier, vol. 307(1), pages 266-278.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:189:y:2008:i:2:p:476-491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.