Graph Convolutional Networks for logistics optimization: A survey of scheduling and operational applications
Author
Abstract
Suggested Citation
DOI: 10.1016/j.tre.2025.104083
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Weiwei Jiang & Haoyu Han & Yang Zhang & Ji’an Wang & Miao He & Weixi Gu & Jianbin Mu & Xirong Cheng, 2024. "Graph Neural Networks for Routing Optimization: Challenges and Opportunities," Sustainability, MDPI, vol. 16(21), pages 1-34, October.
- Xuan Jing & Xifan Yao & Min Liu & Jiajun Zhou, 2024. "Multi-agent reinforcement learning based on graph convolutional network for flexible job shop scheduling," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 75-93, January.
- Bengio, Yoshua & Lodi, Andrea & Prouvost, Antoine, 2021. "Machine learning for combinatorial optimization: A methodological tour d’horizon," European Journal of Operational Research, Elsevier, vol. 290(2), pages 405-421.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Koutecká, Pavlína & Šůcha, Přemysl & Hůla, Jan & Maenhout, Broos, 2025. "A machine learning approach to rank pricing problems in branch-and-price," European Journal of Operational Research, Elsevier, vol. 320(2), pages 328-342.
- Korte, Johanna P. & Yorke-Smith, Neil, 2025. "An aircraft and schedule integrated approach to crew scheduling for a point-to-point airline," Journal of Air Transport Management, Elsevier, vol. 124(C).
- Brammer, Janis & Lutz, Bernhard & Neumann, Dirk, 2022. "Permutation flow shop scheduling with multiple lines and demand plans using reinforcement learning," European Journal of Operational Research, Elsevier, vol. 299(1), pages 75-86.
- Wang, Peixiang & Xu, Qihang & Li, Yufei & Chen, Qunlong & Tao, Jinghan & Qin, Wei & Huang, Heng & Zou, Ying, 2025. "Learning-based hybrid algorithms for container relocation problem with storage plan," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 197(C).
- Shen, Yunzhuang & Sun, Yuan & Li, Xiaodong & Eberhard, Andrew & Ernst, Andreas, 2023. "Adaptive solution prediction for combinatorial optimization," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1392-1408.
- Zhao, Zhonghao & Lee, Carman K.M. & Huo, Jiage, 2023. "EV charging station deployment on coupled transportation and power distribution networks via reinforcement learning," Energy, Elsevier, vol. 267(C).
- Sun, Yanshuo & Kirtonia, Sajeeb & Chen, Zhi-Long, 2021. "A survey of finished vehicle distribution and related problems from an optimization perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
- Li, Mingjie & Hao, Jin-Kao & Wu, Qinghua, 2024. "A flow based formulation and a reinforcement learning based strategic oscillation for cross-dock door assignment," European Journal of Operational Research, Elsevier, vol. 312(2), pages 473-492.
- Long He & Sheng Liu & Zuo‐Jun Max Shen, 2022. "Smart urban transport and logistics: A business analytics perspective," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3771-3787, October.
- Robinson La Rocca, Charly & Cordeau, Jean-François & Frejinger, Emma, 2024. "Combining supervised learning and local search for the multicommodity capacitated fixed-charge network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
- Bootaki, Behrang & Zhang, Guoqing, 2024. "A location-production-routing problem for distributed manufacturing platforms: A neural genetic algorithm solution methodology," International Journal of Production Economics, Elsevier, vol. 275(C).
- Juho Lauri & Sourav Dutta & Marco Grassia & Deepak Ajwani, 2023. "Learning fine-grained search space pruning and heuristics for combinatorial optimization," Journal of Heuristics, Springer, vol. 29(2), pages 313-347, June.
- Ahmet Herekoğlu & Özgür Kabak, 2024. "Crew recovery optimization with deep learning and column generation for sustainable airline operation management," Annals of Operations Research, Springer, vol. 342(1), pages 399-427, November.
- van der Hagen, L. & Agatz, N.A.H. & Spliet, R. & Visser, T.R. & Kok, A.L., 2022. "Machine Learning-Based Feasibility Checks for Dynamic Time Slot Management," ERIM Report Series Research in Management ERS-2022-001-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
- Wei, Lishen & Ai, Xiaomeng & Fang, Jiakun & Cui, Shichang & Gao, Liqian & Li, Kun & Wen, Jinyu, 2025. "Data-augmentation acceleration framework by graph neural network for near-optimal unit commitment," Applied Energy, Elsevier, vol. 377(PD).
- Parmentier, Axel & T’Kindt, Vincent, 2023. "Structured learning based heuristics to solve the single machine scheduling problem with release times and sum of completion times," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1032-1041.
- Fajemisin, Adejuyigbe O. & Maragno, Donato & den Hertog, Dick, 2024. "Optimization with constraint learning: A framework and survey," European Journal of Operational Research, Elsevier, vol. 314(1), pages 1-14.
- Filom, Siyavash & Amiri, Amir M. & Razavi, Saiedeh, 2022. "Applications of machine learning methods in port operations – A systematic literature review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
- Philippe Jardin, 2023. "Designing topological data to forecast bankruptcy using convolutional neural networks," Annals of Operations Research, Springer, vol. 325(2), pages 1291-1332, June.
- Dieter, Peter & Caron, Matthew & Schryen, Guido, 2023. "Integrating driver behavior into last-mile delivery routing: Combining machine learning and optimization in a hybrid decision support framework," European Journal of Operational Research, Elsevier, vol. 311(1), pages 283-300.
More about this item
Keywords
Graph convolutional networks (GCNs); Optimization; Scheduling and job scheduling; Scalability Interpretability; Transfer learning; Ethical implications; Logistics; Vehicle routing problem (VRP); Traveling salesman problem (TSP); Resource allocation; Reinforcement learning (RL) and Deep reinforcement learning (DRL); Dynamic graph processing; Real-world applications; Combinatorial optimization; Traffic flow optimization; Meta-heuristics and Hybrid optimization techniques; Spectral graph theory; Environmental sustainability; Multi-objective optimization; Spatial–temporal dependencies;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:197:y:2025:i:c:s1366554525001243. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.