IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v198y2025ics136655452500136x.html
   My bibliography  Save this article

Data-driven optimization for drone delivery service planning with online demand

Author

Listed:
  • Paul, Aditya
  • Levin, Michael W.
  • Waller, S. Travis
  • Rey, David

Abstract

In this study, we develop an innovative data-driven optimization approach to solve the drone delivery service planning problem with online demand. Drone-based logistics are expected to improve operations by enhancing flexibility and reducing congestion effects induced by last-mile deliveries. With rising digitalization and urbanization, however, logistics service providers are constantly grappling with the challenge of uncertain real-time demand. This study investigates the problem of planning drone delivery service through an urban air traffic network to fulfill dynamic and stochastic demand. Customer requests – if accepted – generate profit and are serviced by individual drone flights as per request origins, destinations and time windows. We cast this stochastic optimization problem as a Markov decision process. We present a novel data-driven optimization approach which generates predictive prescriptions of parameters of a surrogate optimization formulation. Our solution method consists of synthesizing training data via lookahead simulations to train a supervised machine learning model for predicting relative link priority based on the state of the network. This knowledge is then leveraged to selectively create weighted reserve capacity in the network and via a surrogate objective function that controls the trade-off between reserve capacity and profit maximization to maximize the cumulative profit earned. Using numerical experiments based on benchmarking transportation networks, the resulting data-driven optimization policy is shown to outperform a myopic policy. Sensitivity analyses on learning parameters reveal insights into the design of efficient policies for drone delivery service planning with online demand.

Suggested Citation

  • Paul, Aditya & Levin, Michael W. & Waller, S. Travis & Rey, David, 2025. "Data-driven optimization for drone delivery service planning with online demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:transe:v:198:y:2025:i:c:s136655452500136x
    DOI: 10.1016/j.tre.2025.104095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136655452500136X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2025.104095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:198:y:2025:i:c:s136655452500136x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.