IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v380y2025ics0306261924024218.html
   My bibliography  Save this article

Physics informed neural network based multi-zone electric water heater modeling for demand response

Author

Listed:
  • Pandiyan, Surya Venkatesh
  • Gros, Sebastien
  • Rajasekharan, Jayaprakash

Abstract

Devising an effective control strategy to maximize the flexibility potential of electric water heaters (EWHs) requires a highly accurate and computationally inexpensive EWH model. Existing physics-based models are either too simplistic or computationally complex. This paper models EWHs using a physics-informed neural network (PINN) that integrates domain knowledge into the training process to ensure better physical consistency for capturing EWH thermal dynamics at a lower computational cost. Using a physics-based multi-zone (MZ) differential equation model (DEM), the EWH is discretized into multiple zones and modeled using a standard Multiple-Input-Multiple-Output (MIMO) PINN architecture to develop a generic and efficient EWH model. To improve the accuracy and interpretability further, a hybrid model that employs a Multiple-Input-Single-Output (MISO) PINN architecture together with physics derived features from the MZ DEM and a custom designed function for resolving temperature inversion is investigated in detail. Additionally, a customized recursive training strategy is developed to enable longer time-horizon simulations without performance degradation. Performance evaluations in both simulation and optimization frameworks using real-world data demonstrate the computational gains offered by PINN models over traditional MZ DEM.

Suggested Citation

  • Pandiyan, Surya Venkatesh & Gros, Sebastien & Rajasekharan, Jayaprakash, 2025. "Physics informed neural network based multi-zone electric water heater modeling for demand response," Applied Energy, Elsevier, vol. 380(C).
  • Handle: RePEc:eee:appene:v:380:y:2025:i:c:s0306261924024218
    DOI: 10.1016/j.apenergy.2024.125037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924024218
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Guoqing & You, Fengqi, 2023. "An AI framework integrating physics-informed neural network with predictive control for energy-efficient food production in the built environment," Applied Energy, Elsevier, vol. 348(C).
    2. Pied, Marie & Anjos, Miguel F. & Malhamé, Roland P., 2020. "A flexibility product for electric water heater aggregators on electricity markets," Applied Energy, Elsevier, vol. 280(C).
    3. Bengio, Yoshua & Lodi, Andrea & Prouvost, Antoine, 2021. "Machine learning for combinatorial optimization: A methodological tour d’horizon," European Journal of Operational Research, Elsevier, vol. 290(2), pages 405-421.
    4. Gokhale, Gargya & Claessens, Bert & Develder, Chris, 2022. "Physics informed neural networks for control oriented thermal modeling of buildings," Applied Energy, Elsevier, vol. 314(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Guoqing & You, Fengqi, 2024. "AI-enabled cyber-physical-biological systems for smart energy management and sustainable food production in a plant factory," Applied Energy, Elsevier, vol. 356(C).
    2. Murilo Eduardo Casteroba Bento, 2024. "Load Margin Assessment of Power Systems Using Physics-Informed Neural Network with Optimized Parameters," Energies, MDPI, vol. 17(7), pages 1-20, March.
    3. Koutecká, Pavlína & Šůcha, Přemysl & Hůla, Jan & Maenhout, Broos, 2025. "A machine learning approach to rank pricing problems in branch-and-price," European Journal of Operational Research, Elsevier, vol. 320(2), pages 328-342.
    4. Korte, Johanna P. & Yorke-Smith, Neil, 2025. "An aircraft and schedule integrated approach to crew scheduling for a point-to-point airline," Journal of Air Transport Management, Elsevier, vol. 124(C).
    5. Brammer, Janis & Lutz, Bernhard & Neumann, Dirk, 2022. "Permutation flow shop scheduling with multiple lines and demand plans using reinforcement learning," European Journal of Operational Research, Elsevier, vol. 299(1), pages 75-86.
    6. Wang, Peixiang & Xu, Qihang & Li, Yufei & Chen, Qunlong & Tao, Jinghan & Qin, Wei & Huang, Heng & Zou, Ying, 2025. "Learning-based hybrid algorithms for container relocation problem with storage plan," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 197(C).
    7. Chen, Dongyu & Lin, Xiaojie & Qiao, Yiyuan, 2025. "Perspectives for artificial intelligence in sustainable energy systems," Energy, Elsevier, vol. 318(C).
    8. Shen, Yunzhuang & Sun, Yuan & Li, Xiaodong & Eberhard, Andrew & Ernst, Andreas, 2023. "Adaptive solution prediction for combinatorial optimization," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1392-1408.
    9. Liang, Xinbin & Zhu, Xu & Chen, Siliang & Jin, Xinqiao & Xiao, Fu & Du, Zhimin, 2023. "Physics-constrained cooperative learning-based reference models for smart management of chillers considering extrapolation scenarios," Applied Energy, Elsevier, vol. 349(C).
    10. Ni, Wenchi & Tian, Gengqing & Xie, Guangci & Ma, Yong, 2024. "Power prediction of oscillating water column power generation device based on physical information embedded neural network," Energy, Elsevier, vol. 306(C).
    11. Zhao, Zhonghao & Lee, Carman K.M. & Huo, Jiage, 2023. "EV charging station deployment on coupled transportation and power distribution networks via reinforcement learning," Energy, Elsevier, vol. 267(C).
    12. Sun, Yanshuo & Kirtonia, Sajeeb & Chen, Zhi-Long, 2021. "A survey of finished vehicle distribution and related problems from an optimization perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    13. Di Natale, L. & Svetozarevic, B. & Heer, P. & Jones, C.N., 2023. "Towards scalable physically consistent neural networks: An application to data-driven multi-zone thermal building models," Applied Energy, Elsevier, vol. 340(C).
    14. Mukun Yuan & Jian Liu & Zheyuan Chen & Qingda Guo & Mingzhe Yuan & Jian Li & Guangping Yu, 2024. "Predicting Energy Consumption for Hybrid Energy Systems toward Sustainable Manufacturing: A Physics-Informed Approach Using Pi-MMoE," Sustainability, MDPI, vol. 16(17), pages 1-27, August.
    15. Li, Mingjie & Hao, Jin-Kao & Wu, Qinghua, 2024. "A flow based formulation and a reinforcement learning based strategic oscillation for cross-dock door assignment," European Journal of Operational Research, Elsevier, vol. 312(2), pages 473-492.
    16. Long He & Sheng Liu & Zuo‐Jun Max Shen, 2022. "Smart urban transport and logistics: A business analytics perspective," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3771-3787, October.
    17. Robinson La Rocca, Charly & Cordeau, Jean-François & Frejinger, Emma, 2024. "Combining supervised learning and local search for the multicommodity capacitated fixed-charge network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    18. Bootaki, Behrang & Zhang, Guoqing, 2024. "A location-production-routing problem for distributed manufacturing platforms: A neural genetic algorithm solution methodology," International Journal of Production Economics, Elsevier, vol. 275(C).
    19. Juho Lauri & Sourav Dutta & Marco Grassia & Deepak Ajwani, 2023. "Learning fine-grained search space pruning and heuristics for combinatorial optimization," Journal of Heuristics, Springer, vol. 29(2), pages 313-347, June.
    20. Zhong, Yufei & Chen, Xuesheng & Wang, Zhixian & Lin, Regina Fang-Ying, 2024. "The nexus among artificial intelligence, supply chain and energy sustainability: A time-varying analysis," Energy Economics, Elsevier, vol. 132(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:380:y:2025:i:c:s0306261924024218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.